Introduction	
0	

Equations and Numerical Scheme

Benchmarks 0000000 Applications 0000000 Summary 00

Appendix 000

Introduction to AMC Code and Its Applications

Hua-sheng XIE (谢华生, huashengxie@gmail.com)

Department of Physics, Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027, P.R.China

Oct. 17, 2013

IFTS-ZJU, seminar

Ackn.: Y. Xiao, W. Chen (SWIP), L. M. Yu (ECUST), S. Wang, G. Y. Fu, F. Zonca, · · ·

Equations and Numerical Scheme

Benchmarks

Applications 0000000 Summary 00

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

Appendix 000

Motivation

Equations and Numerical Scheme

Model equation Eigenvalue solver

Benchmarks

Introduction

GAE TAE RSAE Ballooning mode Internal kink 'EAE' and 'NAE'

Applications

HL-2A experiments $J_{\parallel 0}$ effects on RSAE

Summary

Summary Future works

Appendix

Tearing mode in cylinder

Introduction •	Equations and Numerical Scheme	Benchmarks 0000000	Applications 0000000	Summary 00	Appendix 000
Motivation					
Why thi	s work?				

- 1. Provide a fast and easily used global eigenvalue solver to estimate the frequencies and mode structures of Alfvén eigenmodes (AEs) in experiments or large scale simulations.
- 2. Related to my work on ballooning mode (to benchmark GTC code).

AMC¹ (Alfvén Mode Code) is an eigenvalue code mainly (but not limited) aimed to study the Alfvén physics (continuum spectrums and eigenmodes) in tokamak.

¹Named by W. Chen.

Introduction	Equations and Numerical Scheme	Benchmarks	Applications	Summary	Appendix
O Model equation	•000	0000000	0000000	00	000

Vorticity equation

We solve the vorticity equation (shear Alfvén law)

$$\nabla \cdot \left(\frac{\omega^2}{v_A^2} \nabla_\perp \delta \phi\right) + \mathbf{B} \cdot \nabla \left(\frac{1}{B^2} \nabla \cdot B^2 \nabla_\perp Q\right) -$$

$$\nabla \left(\frac{J_{\parallel}}{B}\right) \cdot \left(\nabla Q \times \mathbf{B}\right) + 2 \frac{\kappa \cdot \left(\mathbf{B} \times \nabla \delta P\right)}{B^2} = 0,$$
(1)

 $\kappa = \mathbf{b} \cdot \nabla \mathbf{b}, \ Q = (\mathbf{b} \cdot \nabla \delta \phi) / B, \ \delta P = (\mathbf{b} \times \nabla \delta \phi \cdot \nabla P) / B, \ J_{\parallel} = \mathbf{b} \cdot \nabla \times \mathbf{B}.$ Eq.(1) holds for large aspect ratio ($\epsilon = r/R \ll 1$) tokamak plasma to second order, and we have assumed low beta $\beta \sim O(\epsilon^2)$.

Further simplification: shifted circular geometry.

Introduction	Equations and Numerical Scheme	Benchmarks	Applications	Summary	Appendix
0	0000	0000000	0000000	00	000
Model equation					

Assuming $\delta \phi = \sum \delta \phi_m(r) \exp(in\zeta - im\theta)$, expanding Eq.(1) to $O(\epsilon^2)$, we obtain a coupled equation

$$\begin{aligned}
 L_{m,m-1}\delta\phi_{m-1} + L_{m,m}\delta\phi_m + L_{m,m+1}\delta\phi_{m+1} &= 0, \quad (2) \\
 L_{m,m} &= \frac{\partial}{\partial r} \Big[\frac{(1 + 4\epsilon\Delta')}{v_A^2} \bar{\omega}^2 - k_m^2 - c_s^2 \Big] r \frac{\partial}{\partial r} + (k_m^2)' - \\
 \frac{m^2}{r} \Big\{ \frac{[1 - 4\epsilon(\epsilon + \Delta')]}{v_A^2} \bar{\omega}^2 - k_m^2 - c_s^2 - \bar{\kappa}_r \alpha/q^2 \Big\}, \quad (3) \\
 L_{m,m\pm 1} &= \bar{\omega}^2 \Big\{ \frac{\partial}{\partial r} \frac{(2\epsilon + \Delta')}{v_A^2} r \frac{\partial}{\partial r} - \frac{(\epsilon - \Delta')}{v_A^2} \frac{m(m \pm 1)}{r} \\
 \mp \frac{[\epsilon + (r\Delta')']}{v_A^2} m \frac{\partial}{\partial r} \Big\} - \Big\{ \frac{\partial}{\partial r} r \Delta' k_m k_{m\pm 1} \frac{\partial}{\partial r} - \frac{m^2}{r} (\epsilon + \Delta') k_m k_{m\pm 1} \\
 \mp m [\epsilon + (r\Delta')'] k_m k_{m\pm 1} \frac{\partial}{\partial r} \Big\} - \frac{m\alpha}{2q^2} \Big(\frac{m}{r} \mp \frac{\partial}{\partial r} \Big).
 \tag{4}$$

 $ar{\omega} = \omega/(V_A/R_0), \ V_A = ig\langle v_A(r, heta)ig
angle, \ k_m = (n - m/q)$, is the set of the s

Introduction 0	Equations and Numerical Scheme ○○●○	Benchmarks 0000000	Applications 0000000	Summary 00	Appendix 000
Eigenvalue solver					
Eigenval	ue solver				

Note: Different authors (e.g., Fu06, Breizman05, Berk92, Vlad99, \cdots) may give different forms of $L_{m,m}$ and $L_{m,m\pm 1}$. And, some of them may break the **self-adjointness** of the equation. Eqs.(2)-(4) are self-adjoint (all eigenvalues ω^2 are real). And, a term $(k_m^2)'$ is added in $L_{m,m}$ to support low m modes.

The above equation can be solved numerically for both continuum spectrums and eigenmodes. The continuum spectrums are obtained by setting the determinant of the coefficients of the secondorder derivative terms to zero. The eigenmodes are solved as a matrix eigenvalue problem $\mathbf{AX} = \lambda \mathbf{BX}$, with $\omega^2 = \lambda$ and $\mathbf{X} = [\cdots, \delta\phi_{m-1}, \delta\phi_m, \delta\phi_{m+1}, \cdots]^T$.

・ロト ・ 母 ト ・ 臣 ト ・ 臣 ・ うへぐ

Introduction Equations and Numerical Scheme

Benchmarks 0000000 Applications 0000000 Summary 00

Appendix 000

Eigenvalue solver

Eigenvalue solver (cont.)

Eq.(2) supports a wide range of modes such as Alfvén eigenmodes (GAE, TAE, RSAE and more) and unstable internal kink mode as well as ideal ballooning mode (IBM).

Zero boundary conditions. Central difference discrete: $\frac{df}{dr} = \frac{f_{j+1}-f_{j-1}}{2\Delta r}$ and $\frac{d^2f}{dr^2} = \frac{f_{j+1}-2f_j+f_{j-1}}{\Delta r^2}$.

The eigen matrix dimension is $(N_m \times N_r)^2$, where N_r is radial grid number and $N_m = m_{max} - m_{min} + 1$ is number of *m* mode numbers. Sparse matrix is used to speed up. Typical run time is seconds or less [Other codes usually minutes or more]. Equations and Numerical Scheme

Benchmarks

Applications 0000000 Summary 00 Appendix 000

GAE

Introduction

Cylinder global Aflvén eigenmode

 $\rho = 1.0 - 0.98(r/a)^2$, $q = 1.001 + 2.0(r/a)^2$, $\beta = 0$, n = 0, m = 2[PoP, 16, 072505].

Figure 1: GAE in AMC and KAEC codes, $\omega_{GAE}^{AMC} = 1.3842$ and $\omega_{GAE}^{KAEC} = 1.3843$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

Introduction	Equations and Numerical Scheme	Benchmarks	Applications	Summary	Appendix
TAE				00	000
Fu1989	TAF				

$$q = 1.0 + 1.0(r/a)^2$$
, $\rho = 1.0$, n=1 and $R_0/a = 4$ [PFB, 1, 1949]

▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のくぐ

 $\begin{array}{ll} \mbox{Figure 2:} & \mbox{TAE in Fu1989}, \ \omega_{\rm TAE}^{\rm Fu89} = 0.31, \ \omega_{\rm TAE}^{\rm NOVA} = 0.3127, \\ \omega_{\rm TAE}^{\rm KAEC} = 0.302, \ \omega_{\rm TAE}^{\rm AMC} = 0.303. \end{array}$

Equations and Numerical Scheme

Benchmarks

Applications 0000000 Summary 00 Appendix 000

TAE

Even and odd TAEs

 $q = 1.35 + 1.2(r/a)^2$, $\rho = 1/[1 + 2.0(r/a)^2]$, n=1 and $R_0/a = 4$

Equations and Numerical Scheme

Benchmarks 0000000

Applications

Summary

Appendix

RSAE

Reversed shear Alfvén eigenmodes

Deng2010 [PoP, 17, 112504]

Figure 4: RSAE in Deng2010, $\omega_{\text{RSAE}}^{\text{GTC}} = 0.135$, $\omega_{\text{RSAE}}^{\text{HMGC}} = 0.160$, $\omega_{\rm RSAE}^{\rm AMC} = 0.147, \ \omega_{\rm RSAE}^{\rm accum} = 0.142.$

Introduction	Equations and Numerical Scheme	Benchmarks	Applications	Summary	Appendix
O Ballooning mode	0000	0000000	0000000	00	000
Dallooning mode					

Ballooning mode

Test run

Figure 5: $\delta \phi_m(r)$, $\delta \phi(r, \theta)$ for n = 20 mode and γ v.s. n.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 0	Equations and Numerical Scheme	Benchmarks ○○○○●○	Applications 0000000	Summary 00	Appendix 000
Internal kink					
	1 · · · ·				

Internal kink

Test run

Introd	uction
0	

Equations and Numerical Scheme

Benchmarks

Applications 0000000 Summary 00 Appendix 000

'EAE' and 'NAE'

'EAE' and 'NAE'

High order $(m \pm 2, 3, \cdots)$ gap AEs

For 'EAE' and 'NAE', the non-circular geometry is not a must!

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへの

Equations and Numerical Scheme

Benchmarks 0000000 Applications •000000 Summary 00

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Appendix 000

HL-2A experiments

Sweeping RSAEs in HL-2A

Characterization of sweeping modes

A group of modes characterizes by down-sweeping frequency during NBI+ECRH and current ramp-up, and another group of modes characterizes by up-sweeping frequency before sawtooth crash during only NBI and current plateau.

>The toroidal mode numbers of two group modes are low, i.e. n=2-5, and poloidal mode number m=n.

The two group modes propagate poloidally parallel to the ion diamagnetic drift velocity and toroidally parallel to the plasma current direction in the laboratory frame of reference.

Figure 6: W. Chen *et al.*, 13th IAEA-TM EP, 17-20 September 2013, Beijing, China.

Equations and Numerical Scheme

Benchmarks 0000000 Applications

Summary 00

э

Appendix 000

HL-2A experiments

Sweeping RSAEs in HL-2A

Figure 7: W. Chen *et al.*, 13th IAEA-TM EP, 17-20 September 2013, Beijing, China.

Equations and Numerical Scheme

Benchmarks

Applications

Summary 00 Appendix 000

HL-2A experiments

More data to be understood in HL-2A

Typical Instabilities Driven by Energetic Particles on HL-2A

Need more research on experiment and theory, such as From W. Chen measurement and calculation of mode structures

Equations and Numerical Scheme

Benchmarks

Applications 000€000 Summary 00 Appendix 000

HL-2A experiments

More data to be understood in HL-2A (cont.)

From W. Chen

イロト 不得 とうき とうとう

э

Introduction 0	Equations and Numerical Scheme	Benchmarks 0000000	Applications	Summary 00	Appendix 000
$J_{\parallel 0}$ effects on RSA	E				
Parallel e	equilibrium current	effects on	the exist	ence of	
RSAE					

$\begin{array}{l} \mathsf{RSAEs existence criterion [Berk2001 \ \mathsf{PRL}]} \ Q_{\mathrm{eff}} = Q_{\mathrm{f}} + Q_{\mathrm{tor}} + Q_{\mathrm{kink}} + \\ Q_{\mathrm{pressure}} + Q_{\mathrm{kinetic}} + ... > Q_{\mathrm{critical}} = 1/4 \end{array}$

Introduction 0	Equations and Numerical Scheme	Benchmarks 0000000	Applications	Summary 00	Appendix 000
$J_{ 0}$ effects on RS.	AE				
Without	$J_{\parallel 0}$				

Introduction	Equations and Numerical Scheme	Benchmarks	Applications	Summary	Appendix
0	0000	0000000	000000	00	000

 $J_{\parallel 0}$ effects on RSAE

With $J_{\parallel 0}$ (No RSAE)

Introduction 0	Equations and Numerical Scheme	Benchmarks 0000000	Applications 0000000	Summary ●○	Appendix 000
Summary					
Summar	V				

- 1. A fast and easily used global eigenvalue code is developed.
- 2. Good agreements with other codes.
- 3. Can be used as a tool for understanding the experiments and large scale simulations.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Introduction 0	Equations and Numerical Scheme	Benchmarks 0000000	Applications 0000000	Summary ○●	Appendix 000
Future works					
Future v	vorks				

1. Extending it to more complicated models (e.g., adding kinetic effects).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

2. Applying it for ballooning mode study, especially to benchmark GTC.

Introduction 0	Equations and Numerical Scheme	Benchmarks 0000000	Applications 0000000	Summary 00	Appendix ●00
Tearing mode in	cylinder				
Tearing	mode				
Reduced MHD equation for cylinder tearing mode					
	$\begin{cases} \partial_t \Psi = [\Psi, \phi] + \\ \partial_t U = [U, \phi] + \end{cases}$	$- \eta abla_{\perp}^2 \Psi + \delta_{\perp}^2 - [\Psi, j_{arphi}] + \partial_{\perp}^2$	$\partial_{\varphi}\phi,\ _{\varphi}j_{\varphi}+ u abla_{\perp}^{2}U$	J.	(5)
U = V	$ abla_{\perp}^2 \phi$, $j_arphi = abla_{\perp}^2 \Psi$.				

$$\begin{cases} [f,g] = \frac{1}{r} \left(\frac{\partial f}{\partial r} \frac{\partial g}{\partial \theta} - \frac{\partial g}{\partial r} \frac{\partial f}{\partial \theta} \right) = \frac{im}{r} \left(g \frac{\partial f}{\partial r} - f \frac{\partial g}{\partial r} \right), \\ \nabla_{\perp}^{2} = \frac{1}{r} \left(\frac{\partial}{\partial r} r \frac{\partial}{\partial r} \right) + \frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} = \frac{1}{r} \left(\frac{\partial}{\partial r} r \frac{\partial}{\partial r} \right) - \frac{m^{2}}{r^{2}}. \end{cases}$$
(6)

Equilibrium relations: $q^{-1} = -\frac{1}{r}\frac{d}{dr}\Psi_0$, $j_0 = \nabla_{\perp}^2\Psi_0 = -\frac{1}{r}\frac{d}{dr}\frac{r^2}{q}$, $s = \frac{r}{q}\frac{dq}{dr}$, $U_0 = \phi_0 = 0$.

Similar treatment will be used to extend AMC for toroidial tearing mode.

・ロト・日本・モート モー うへぐ

Introduction	Equations and Numerical Scheme	Benchmarks	Applications	Summary	Appendix
0	0000	0000000	0000000	00	000
Tearing mode in	cylinder				

Tearing mode

▲ロト ▲圖ト ▲注ト ▲注ト … 注 … のへの

Introduction	Equations and Numerical Scheme	Benchmarks	Applications	Summary	Appendix
0	0000	0000000	0000000	00	000

Tearing mode in cylinder

Double tearing mode

