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Motivation

Why this work?

1. Provide a fast and easily used global eigenvalue solver to
estimate the frequencies and mode structures of Alfvén
eigenmodes (AEs) in experiments or large scale simulations.

2. Related to my work on ballooning mode (to benchmark GTC
code).

AMC1 (Alfvén Mode Code) is an eigenvalue code mainly (but not
limited) aimed to study the Alfvén physics (continuum spectrums
and eigenmodes) in tokamak.

1
Named by W. Chen.
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Model equation

Vorticity equation

We solve the vorticity equation (shear Alfvén law)
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B2
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(1)

κ = b·∇b, Q = (b·∇δφ)/B, δP = (b×∇δφ·∇P)/B, J‖ = b·∇×B.
Eq.(1) holds for large aspect ratio (ε = r/R � 1) tokamak plasma
to second order, and we have assumed low beta β ∼ O(ε2).

Further simplification: shifted circular geometry.
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Model equation

Assuming δφ =
∑

δφm(r) exp(inζ − imθ), expanding Eq.(1) to
O(ε2), we obtain a coupled equation

Lm,m−1δφm−1 + Lm,mδφm + Lm,m+1δφm+1 = 0, (2)
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(4)

ω̄ = ω/(VA/R0), VA =
〈
vA(r , θ)

〉
, km = (n −m/q).
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Eigenvalue solver

Eigenvalue solver

Note: Different authors (e.g., Fu06, Breizman05, Berk92, Vlad99,
· · · ) may give different forms of Lm,m and Lm,m±1. And, some of
them may break the self-adjointness of the equation. Eqs.(2)-(4)
are self-adjoint (all eigenvalues ω2 are real). And, a term (k2

m)′ is
added in Lm,m to support low m modes.

The above equation can be solved numerically for both contin-
uum spectrums and eigenmodes. The continuum spectrums are ob-
tained by setting the determinant of the coefficients of the second-
order derivative terms to zero. The eigenmodes are solved as a
matrix eigenvalue problem AX = λBX, with ω2 = λ and X =
[· · · , δφm−1, δφm, δφm+1, · · · ]T .
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Eigenvalue solver

Eigenvalue solver (cont.)

Eq.(2) supports a wide range of modes such as Alfvén eigenmodes
(GAE, TAE, RSAE and more) and unstable internal kink mode as
well as ideal ballooning mode (IBM).

Zero boundary conditions. Central difference discrete: df
dr =

fj+1−fj−1

2∆r

and d2f
dr2 =

fj+1−2fj+fj−1

∆r2 .

The eigen matrix dimension is (Nm × Nr )
2, where Nr is radial grid

number and Nm = mmax −mmin +1 is number of m mode numbers.
Sparse matrix is used to speed up. Typical run time is seconds or
less [Other codes usually minutes or more].
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GAE

Cylinder global Aflvén eigenmode

ρ = 1.0− 0.98(r/a)2, q = 1.001 + 2.0(r/a)2, β = 0, n = 0, m = 2
[PoP, 16, 072505].

Figure 1: GAE in AMC and KAEC codes, ωAMC
GAE = 1.3842 and

ωKAEC
GAE = 1.3843.
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TAE

Fu1989 TAE

q = 1.0 + 1.0(r/a)2, ρ = 1.0, n=1 and R0/a = 4 [PFB, 1, 1949].

Figure 2: TAE in Fu1989, ωFu89
TAE = 0.31, ωNOVA

TAE = 0.3127,
ωKAEC

TAE = 0.302, ωAMC
TAE = 0.303.
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TAE

Even and odd TAEs

q = 1.35 + 1.2(r/a)2, ρ = 1/[1 + 2.0(r/a)2], n=1 and R0/a = 4

Figure 3: Odd and even TAEs. ωNOVA
Odd = 0.4050, ωKAEC

Odd = 0.4086,
ωAMC

Odd = 0.4088; ωNOVA
Even = 0.3550, ωKAEC

Even = 0.3523, ωAMC
Even = 0.3505.
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RSAE

Reversed shear Alfvén eigenmodes

Deng2010 [PoP, 17, 112504]

Figure 4: RSAE in Deng2010, ωGTC
RSAE = 0.135, ωHMGC

RSAE = 0.160,
ωAMC

RSAE = 0.147, ωaccum
RSAE = 0.142.
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Ballooning mode

Ballooning mode

Test run

Figure 5: δφm(r), δφ(r , θ) for n = 20 mode and γ v.s. n.
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Internal kink

Internal kink
Test run
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‘EAE’ and ‘NAE’

‘EAE’ and ‘NAE’

High order (m ± 2, 3, · · · ) gap AEs

For ‘EAE’ and ‘NAE’, the non-circular geometry is not a must!
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HL-2A experiments

Sweeping RSAEs in HL-2A

Figure 6: W. Chen et al., 13th IAEA-TM EP, 17-20 September 2013,
Beijing, China.
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HL-2A experiments

Sweeping RSAEs in HL-2A

Figure 7: W. Chen et al., 13th IAEA-TM EP, 17-20 September 2013,
Beijing, China.
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HL-2A experiments

More data to be understood in HL-2A
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HL-2A experiments

More data to be understood in HL-2A (cont.)
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J‖0 effects on RSAE

Parallel equilibrium current effects on the existence of
RSAE

RSAEs existence criterion [Berk2001 PRL] Qeff = Qf+Qtor+Qkink+
Qpressure + Qkinetic + ... > Qcritical = 1/4
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J‖0 effects on RSAE

Without J‖0
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J‖0 effects on RSAE

With J‖0 (No RSAE)
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Summary

Summary

1. A fast and easily used global eigenvalue code is developed.

2. Good agreements with other codes.

3. Can be used as a tool for understanding the experiments and
large scale simulations.
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Future works

Future works

1. Extending it to more complicated models (e.g., adding kinetic
effects).

2. Applying it for ballooning mode study, especially to
benchmark GTC.
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Tearing mode in cylinder

Tearing mode

Reduced MHD equation for cylinder tearing mode{
∂tΨ = [Ψ, φ] + η∇2

⊥Ψ + ∂ϕφ,

∂tU = [U, φ] + [Ψ, jϕ] + ∂ϕjϕ + ν∇2
⊥U.

(5)
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(6)

Equilibrium relations: q−1 = −1
r

d
dr Ψ0, j0 = ∇2

⊥Ψ0 = −1
r

d
dr

r2

q ,

s = r
q

dq
dr , U0 = φ0 = 0.

Similar treatment will be used to extend AMC for toroidial tearing
mode.
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Tearing mode in cylinder

Tearing mode
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Tearing mode in cylinder

Double tearing mode
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