Mo	del and Formalism
00	000

Analytical theory for RSAE

Numerical verifications

Summary 0000

Parallel Equilibrium Current Effect on Existence of Reversed Shear Alfvén Eigenmodes

Hua-sheng XIE (谢华生, huashengxie@gmail.com) and Yong XIAO

Department of Physics, Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027, P.R.China

> 第三届聚变模拟与理论研讨会 Mar. 23 - 25, 2015, Hefei

Ackn.: W. Chen (SWIP), L. M. Yu (ECUST), S. Wang, G. Y. Fu, ···

イロト イ団ト イヨト イヨト

Introduction	Model and Formalism	Analytical theory for RSAE	Numerical verifications	Summary
•0	00000	00	0000	0000
Motivation				
Motivatio	on			

- Inspired by HL-2A recent experiment [Chen *et al*, 13]. NOVA [Cheng86] can not find a well mode structure RSAE. KAEC [Yu09] can find a similar eigenmode as found in experiment when including kinetic effects or excluding kink term. WHY?
- New fast global eigenvalue code AMC (Alfvén Mode Code) for large scale simulations (e.g., GTC) & experiments (e.g., HL-2A, J-TEXT).
- Improve several inaccurate (model equation) expressions in literatures.

イロト イポト イヨト イヨト

Model	and	Formal
0000	00	

Introduction O BSAE Analytical theory for RSAE

Numerical verifications

Summary 0000

Reversed shear Alfvén eigenmodes

- RSAE (or Alfvén cascade modes), localized around q_{min}, reversed shear profile.
- General Strength Strengt Strength Strength Strength Strength Strength Strength Stre
- Experiments: Kimura98, Sharapov01, Nazikian03, [HL-2A, Chen *et al*, 13] ...
- Theoretically, existence of RSAEs well studied: energetic particle [Berk01], toroidicity [Breizman03], pressure / pressure gradient [Breizman05,Fu06,Yu13], kinetic [Yu09], ...
- Limitations of previous studies of parallel equilibrium current (kink) term: Qualitative. [Deng10&12].

Berk et al, 2001, PRL.

イロト イポト イヨト イヨト

Introduction	Model and Formalism	Analytical theory for RSAE	Numerical verifications	Summary
00	0 000	00	0000	0000
Vorticity equation				

Starting equation

Vorticity equation (shear Alfvén law)

 $\kappa = \mathbf{b} \cdot \nabla \mathbf{b}, \ Q = (\mathbf{b} \cdot \nabla \delta \phi) / B, \ \delta P = (\mathbf{b} \times \nabla \delta \phi \cdot \nabla P) / B, \ J_{\parallel} = \mathbf{b} \cdot \nabla \times \mathbf{B}.$

Shifted circular geometry. Second order for $\epsilon = r/R \ll 1$, $\beta \sim O(\epsilon^2)$.

Feature 1 (the equation): Terms separated well, good for theoretical study. NOVA: 1. numerical equilibrium; 2. solves original MHD equation. Difficult to separate different effects.

イロト 不得下 イヨト イヨト 二日

Introduction	Model and Formalism	Analytical theory for RSAE	Numerical verifications	Summary
00	0000	00	0000	0000
Vorticity equation				

We solve below coupled equation

 $\delta\phi = \sum \delta\phi_m(r) \exp(in\zeta - im\theta)$, expanding Eq.(1) to $O(\epsilon^2)$, to a coupled equation

$$\mathbf{L}_{\mathbf{m},\mathbf{m}-1}\delta\phi_{\mathbf{m}-1} + \mathbf{L}_{\mathbf{m},\mathbf{m}}\delta\phi_{\mathbf{m}} + \mathbf{L}_{\mathbf{m},\mathbf{m}+1}\delta\phi_{\mathbf{m}+1} = \mathbf{0},$$
(2)

$$L_{m,m} = \frac{\partial}{\partial r} \left[\frac{(1 + 4\epsilon\Delta')}{v_A^2} \bar{\omega}^2 - k_m^2 - c_s^2 \right] r \frac{\partial}{\partial r} + (k_m^2)' - \frac{m^2}{r} \left\{ \frac{[1 - 4\epsilon(\epsilon + \Delta')]}{v_A^2} \bar{\omega}^2 - k_m^2 - c_s^2 - \bar{\kappa}_r \alpha/q^2 \right\},$$
(3)

$$L_{m,m\pm 1} = \bar{\omega}^2 \left\{ \frac{\partial}{\partial r} \frac{(2\epsilon + \Delta')}{v_A^2} r \frac{\partial}{\partial r} - \frac{(\epsilon - \Delta')}{v_A^2} \frac{m(m\pm 1)}{r} \right.$$

$$\left. \pm \frac{[\epsilon + (r\Delta')']}{v_A^2} m \frac{\partial}{\partial r} \right\} - \left\{ \frac{\partial}{\partial r} r \Delta' k_m k_{m\pm 1} \frac{\partial}{\partial r} - \right. \tag{4}$$

$$\frac{m^2}{r}(\epsilon+\Delta')k_mk_{m\pm 1}\mp m[\epsilon+(r\Delta')']k_mk_{m\pm 1}\frac{\partial}{\partial r}\Big\}-\frac{m\alpha}{2q^2}\Big(\frac{m}{r}\mp\frac{\partial}{\partial r}\Big).$$

 $\bar{\omega} = \omega/(V_A/R_0), V_A = \langle v_A(r,\theta) \rangle, k_m = (n-m/q).$

A D N A P N A P N

Introduction	Model and Formalism	Analytical theory for RSAE	Numerical verifications	Summary
00	00000	00	0000	0000
Eigenvalue solver				
Eigenvalı	ue solver			

- Different authors may give different forms of L_{m,m} and L_{m,m±1}. Some (Fu06, Breizman05, Vlad99, ···) may break the self-adjointness¹. Ours are self-adjoint (all eigenvalues ω² are real).
- Ontinuum spectrums: setting the determinant of the coefficients of the second-order derivative terms to zero.
- **③** Eigenmodes: $\mathbf{AX} = \lambda \mathbf{BX}$, $\omega^2 = \lambda$, $\mathbf{X} = [\cdots, \delta \phi_{m-1}, \delta \phi_m, \delta \phi_{m+1}, \cdots]^T$. Zero boundary condition.
- Feature 2 (the code): Supports AEs (GAE, TAE, RSAE and more), unstable kink & ballooning. More extensions (tearing, kinetic, EPM, flow, ...) on the way.
- Eigen matrix dimension $(N_m \times N_r)^2$, $N_m = m_{max} m_{min} + 1$. Sparse matrix and standard eigenvalue solver (e.g., *eigs* in MATLAB) to speed up.
- Feature 3 (the code): Fast and easily used significantly. Typical run time: seconds or less. Other codes (NOVA, KAEC, GTAW, ...): minutes or more.

 Introduction
 Model and Formalism
 Analytical theory for RSAE
 Numerical verifications
 Sum

 Benchmark
 00
 00
 00
 00
 00

Agreed well with NOVA, KAEC, GTC and HMGC for GAE, TAE, RSAE.

Typical benchmark: Odd and even TAEs.

$$\begin{array}{l} q = 1.35 + 1.2 (r/a)^2, \\ \rho = 1/[1 + 2.0 (r/a)^2], \text{ n=1,} \\ R_0/a = 4. \end{array}$$

-	NOVA	KAEC	AMC
$\omega_{ m Odd}$	0.4050	0.4086	0.4088
ω_{Even}	0.3550	0.3523	0.3505

H. S. Xie & Y. Xiao (IFTS-ZJU)

Mar. 23 - 25, 2015 7 / 18

AMC frequencies and RSAE sweeping agree with experiment.

H. S. Xie & Y. Xiao (IFTS-ZJU)

イロト イヨト イヨト イヨト

RSAEs existence criterion² (theory)

Assume single *m* dominant, dimensionless equation for RSAE

$$\frac{\partial}{\partial x}(S+x^2)\frac{\partial}{\partial x}\delta\phi_m + (Q-S-x^2)\delta\phi_m = 0,$$
(5)

 $x = m(r - r_0)/r_0$, r_0 the radius of q_{\min} .

② RSAEs existence criterion $Q_{\text{eff}} = Q_{\text{f}} + Q_{\text{tor}} + Q_{\text{pressure}} + Q_{\text{kinetic}} + ... > Q_{\text{critical}} = 1/4$. These terms can be either favorable or unfavorable. Q_{eff} as Schrödinger potential, Q_{critical} similarly as Suydam's criterion.

In the above analytical calculations are not rigorous.

²Berk et al, 2001, PRL.

イロン イ団ン イヨン イヨン

Introduction	Model and Formalism	Analytical theory for RSAE	Numerical verifications	Summary
00	00000	0	0000	0000
RSAEs existence criterion				

Q terms (theory)

 Q_{tor} usually small: the pure toroidicity factor difficult to make RSAE exist.

$$Q_{\rm tor} = 2 \frac{m q_0^2 (-k_{m0})}{r_0^2 q_0''} \frac{(\epsilon^2 + 2\Delta' \epsilon)}{1 - 4k_{m0}^2 q_0^2}.$$
 (6)

Our quantitative result:

Without kink term, $L_{m,m}^{new} = L_{m,m} + 3k_m k'_m + rk_m k''_m$,

$$Q_{\rm new} \simeq \frac{r_0 k_{m0} (k_m'')_0}{r_0 (k_m^2)_0'/2} \simeq 1. \tag{7}$$

always larger than zero (with kink, $Q_{new} = 0$), also easy larger than $Q_{critical} = 1/4$ \Rightarrow parallel equilibrium current always (strongly) unfavorable!

(日) (同) (日) (日)

uction Model and Formalism Analytical theory for RSAE Numerical verifications

Figure: Good global RSAE mode only exist when kink term is removed.

Case 1 (numerical)

Case 1

$$q(r) = q_m + c_1(r^2 - r_m^2)^2 + c_2(r^2 - r_m^2)^3,$$

$$v_A^2(r) = 1/(1 + 3r^2). \quad n = 4, \ R_0/a = 5,$$

$$q_m = 1.91, \ q_0 = 2.0, \ q_a = 3.5, \ r_m = 0.5.$$

$$Q_{
m tor}=0.2578$$
, $Q_{
m new}=0.5184$.

Can pure toroidicity factor $(Q_{\rm f} = Q_{\rm pressure} = Q_{...} = 0 \text{ but } Q_{\rm tor} \neq 0)$ make RSAE exist in global calculations?

Yes, although difficult!

$$q(r) = rac{q_0}{[1-(x-0.5)^2/w_q^2]}, \ v_A^2(r) = 1.$$

To make $Q_{
m tor}\gg 1/4.$

Figure: Good global RSAE mode exist for both with and w/o kink term cases.

$$n = 10, R_0/a = 5, q_m = 1.87, w_q = 2.5.$$

Introduction	Model and Formalism	Analytical theory for RSAE	Numerical verifications	Summary
00	00000	00	0000	0000
GTC simulation				
СТС	· · · · · · · · · · · · · · · · · · ·	1		

GTC verification (simulation)

RSAE exists for both with and w/o kink term cases.

 $v_A^2(r)=1.$

 $n = 10, R_0/a = 5.0, q_{\min} = 1.87.$

GTC simulation of RSAE: (a) q(r) profile; (b & c) ϕ on poloidal plane w/o and with kink term.

M	odel	and	Formalism
0	000	00	

Discussions

Discussions Case 2 & GTC case

- For Case 2 and GTC case, the mode structures for both with and w/o $J_{\parallel 0}$ are similar though a slight difference in frequency.
- Indicates that kink term mainly affects whether RSAE can exist, but affects little for the mode structure when RSAE has existed.
- Since the effect of each terms in Q_{eff} are just a summation, for simplicity in equations and simulations, we can use this Q_{new} to replace other terms. That is, to make RSAE exist, we can suppress kink term artificially instead of adding fast particles, pressure and so on.
- However, this suggestion is only useful for numerical studies, since that all effects should exist in experiments.

イロト イヨト イヨト イヨト

Introduction	Model and Formalism	Analytical theory for RSAE	Numerical verifications	Summary
00	00000	00	0000	0000
Summary				
Summary ³				

- Clarified that the equilibrium parallel current Q_{new} term is always (strongly) unfavorable, and the artificial suppression of this term in equations or simulations will help to find RSAEs.
- **②** At ideal MHD and zero-pressure limits, the main possible favorable term is the toroidicity term Q_{tor} . Though usually small, the toroidicity effect can also make RSAE exist under same parameters.
- Other contributions of this work: several inaccurate expressions in literatures have been improved and a new fast and easily used global eigenvalue code is constructed, for studying the Alfvén modes in tokamak plasma.

³[Xie2015] H. S. Xie & Y. Xiao, Phys. Plasmas, 22, 022518 (2015). AMC and awcon codes: http://ifts.zju.edu.cn/student/hsxie/codes/amc/

troduction	Model and Formalism	Analytical theory for RSAE	Numerical verifications	Summary
0	00000	00	0000	0000
lore / future topics				

Down-sweeping RSAE

N

Down-sweeping RSAE was also found in AMC model. The existence of this interesting mode very sensitive to parameters.

H. S. Xie & Y. Xiao (IFTS-ZJU)

 $J_{\parallel 0}$ effects on RSAE

Mar. 23 - 25, 2015 16 / 18

Introduction	Model and Formalism	A
00	00000	C
More / future topics		

IBM

Analytical theory for RSAE

Numerical verifications

Summary

2-2. Ideal Ballooning (1/3)

	gamma	r/a (position)
s-alpha, n-> infty	6.51	0.62
gtc, n=30	6.7	0.60
amc-reduce, n=30	5.75	0.63

イロト イヨト イヨト イヨト

IBM benchmark: AMC, local *s*- α , GTC.

H. S. Xie & Y. Xiao (IFTS-ZJU)

0

 $J_{\parallel 0}$ effects on RSAE

Mar. 23 - 25, 2015 17 / 18

w/o shift

Introduction	Model and Formalism	Analytical theory for RSAE	Numerical verifications	Summary
00	00000	00	0000	0000
More / future topics				
Gap AEs				

Gap AEs agree with HL-2A recent experiments.

э

イロト イヨト イヨト イヨト