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Introduction

Landau damping1 is one of the most interesting phenomena found
in plasma physics. However, the mathematical derivation and
physical understanding of it are usually headache, especially for
beginners.

Here, I will tell how to use simple and short codes to study this
phenomena. A shortest code to produce Landau damping
accurately can be even less than 10 lines!

1I think I can safely say that nobody understands Landau damping fully.
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Linear simulation model: equation

We focus on the electrostatic 1D (ES1D) Vlasov-Poisson system
(ion immobile).

The simplest method to study Landau damping is solving the
following equations

∂tδf = −ikvδf + δE∂v f0, (1a)

ikδE = −
∫

δfdv , (1b)



Introduction Linear simulation model Dispersion relation Particle-in-cell Vlasov continuity simulation Nonlinear

Example code

1 k =0.4 ; dt =0.01; nt =8000; dv =0.1 ; vv=−8:dv : 8 ;
2 df0dv=−vv .∗ exp(−vv . ˆ 2 . / 2 ) / s q r t (2∗ p i ) ;
3 d f =0.∗ vv +0.1.∗ exp (−(vv−2.0) . ˆ 2 ) ; t t=l i n s p a c e (0 , nt ∗

dt , nt+1) ;
4 dE=ze r o s (1 , nt+1) ; dE (1 ) =0.01;
5 f o r i t =1: nt
6 d f=df+dt .∗(−1 i ∗k .∗ vv .∗ d f+dE( i t ) .∗ df0dv ) ;
7 dE( i t +1)=(1 i /k ) ∗sum( d f ) ∗dv ;
8 end
9 p l o t ( t t , r e a l ( dE) ) ; x l a b e l ( ’ t ’ ) ; y l a b e l ( ’Re (dE) ’ ) ;
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Simulation result
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Figure 1: Linear simulation of Landau damping.
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Exercise

Exercise 1: Solving the following fluid equations

∂tδn = −ikδu, (2a)

∂tδu = −δE − 3ikδn, (2b)

ikδE = −δn, (2c)

using the above method to reproduce the Langmuir wave

ω2 = 1 + 3k2. (3)
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Dispersion relation

D(k, ω) = 1− 1

k2

∫
C

∂f0/∂v

v − ω/k
dv = 0, (4)

where C is the Landau integral contour. For Maxwellian

distribution f0 = 1√
2π

e−
v2

2 , we will meet the well-known plasma

dispersion function (PDF)

ZM(ζ) =
1√
π

∫
C

e−z2

z − ζ
dz . (5)

Hence, (4) is rewritten to

D(k, ω) = 1− 1

k2

1

2
Z ′

M(ζ) = 0. (6)
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Numerical solutions

Table 1: Numerical solutions of the Landau damping dispersion relation

kλD ωr/ωpe γr/ωpe

0.1 1.0152 -4.75613E-15

0.2 1.06398 -5.51074E-05

0.3 1.15985 -0.0126204

0.4 1.28506 -0.066128

0.5 1.41566 -0.153359

0.6 1.54571 -0.26411

0.7 1.67387 -0.392401

0.8 1.7999 -0.534552

0.9 1.92387 -0.688109

1.0 2.0459 -0.85133

1.5 2.63233 -1.77571

2 3.18914 -2.8272
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Comparison of DR and linear simulation
Adding some diagnosis lines to the code. Perfect agreement:
ωtheory = 1.28506− 0.066128i and ωsimulation = 1.2849− 0.06627i
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Figure 2: Linear simulation of Landau damping and compared with
theory.
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More

Note: Several related topics have been omitted here, e.g.,
Case-van Kampen ballistic modes (eigenmode problem),
non-physical recurrence effect (the Poincaré recurrence) at
TR = 2π/(k∆v)[1], solving the dispersion relation with general
equilibrium distribution functions (not limited to Maxwellian),
advanced schemes (e.g., 4th R-K), and so on. One can refer
Ref.[2] and references in for more details.
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PIC simulation: equations

Normalized equations (Lagrangian approach)

dtxi = vi , (7a)

dtvi = −E (xi ), (7b)

dxE (xj) = 1− n(xj), (7c)

where i = 1, 2, · · · ,Np is particle (marker) label and
j = 0, 1, · · · ,Ng − 1 is grid label. The particles i can be every
where, whereas the field is discrete in grids xj = j∆x . ∆x = L/Ng .
Domain 0 < x < L [note:

∫
n(x)dx = L], periodic boundary

conditions n(0) = n(L) and
〈
E (x)

〉
x

= 0. Any particle crosses the
right boundary of the solution domain must reappear at the left
boundary with the same velocity, and vice versa.

The initial probability distribution function [e.g., f0 = 1√
2π

e−
v2

2 ] is

generated by Np random numbers.
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Key steps

Two key steps for PIC are: 1. Field E (xj) on grids to E (xi ) on
particle position; 2. Particle density n(xi ) to grids n(xj). Suppose
that the i-th electron lies between the j-th and (j + 1)-th
grid-points, i.e., xj < xi ≤ xj+1. Usually, the below interpolation
method is used

nj = nj +
xj+1 − xi

xj+1 − xj

1

∆x
, (8a)

nj+1 = nj+1 +
xi − xj

xj+1 − xj

1

∆x
. (8b)

The above procedure is repeated from the first particle to the last
particle. Similar procedure are used to mapping E (xj) to E (xi ).
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PIC result
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Figure 3: PIC simulation of Landau damping (pices1d.m code).

The energy conservation is very well. Real frequency and damping
rate agree roughly with theory. A main drawback of PIC is the
noise. Usually, very large Np is required.
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Vlasov continuity simulation: equations

Euler approach.
Vlasov equation

∂t f (x , v , t) = −v∂x f − ∂xφ∂v f , (9)

Discrete

f n+1
i ,j − f n

i ,j

∆t
= −vj

f n
i+1,j − f n

i−1,j

2∆x
−

φn
i+1,j − φn

i−1,j

2∆x

f n
i ,j+1 − f n

i ,j−1

2∆v
,

(10)
gives

f n+1
i ,j = f n

i ,j−vj

f n
i+1,j − f n

i−1,j

2

∆t

∆x
−

φn
i+1,j − φn

i−1,j

2∆x

f n
i ,j+1 − f n

i ,j−1

2

∆t

∆v
.

(11)
Poisson equation

∂2
xφ =

∫
fdv − 1. (12)
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Discrete

φi+1 − 2φi + φi−1

∆x2
=

∑
j

fi ,j∆v − 1 ≡ ρi , (13)

i.e.,
−2 1 0 · · 0 1
1 −2 1 · · · 0
0 1 −2 1 · · ·
· · · · · · ·
1 0 · · · 1 2




φ1

φ2

·
·

φN

 =


ρ1

ρ2

·
·

ρN

∆x2, (14)

where we have used the periodic boundary condition φ(0) = φ(L),
i.e., φ1 = φN+1 and φ0 = φN .
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Simualtion results
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Figure 4: Vlasov continuity simulation, history plotting (code fkvl1d.m).
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Figure 5: Vlasov continuity simulation, distribution function (code
fkvl1d.m).
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Nonlinear simulations

The PIC and Vlasov codes provided in the above sections can be
easily modified to study the linear and nonlinear physics of the
beam-plasma or two-stream instabilities.

A PIC simulation of two-stream instability is shown in Fig. 6 and
Fig. 7. The linear growth and nonlinear saturation are very clear.

Exercise 2: Solving the kinetic or fluid dispersion relations for
beam-plasma or two-stream plasma and comparing the results with
linear and nonlinear simulations using the above models.
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Simulation result

Figure 6: PIC simulation of the two-stream instability, phase space
plotting.
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Simulation result
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Figure 7: PIC simulation of the two-stream instability, history plotting.
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equation in configuration space, Journal of Computational
Physics, 22, 330 - 351, 1976.
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