Erratum "PDRF: A general dispersion relation solver for magnetized multi-fluid plasma"

Hua-sheng XIE^{*}, huashengxie@gmail.com, IFTS-ZJU

April 14, 2016

Erratum to "H. S. Xie, PDRF: A general dispersion relation solver for magnetized multi-fluid plasma, Computer Physics Communications, 185, 670 - 675 (2014)". http://dx.doi.org/10.1016/j.cpc.2013.10.012

- 1. Eq.(3b), $P_{\parallel,\perp j1} = c_{\parallel,\perp j}^2 n_{j1}$ should be $P_{\parallel,\perp j1} = c_{\parallel,\perp j}^2 m_j n_{j1}$. Eq.(7), matrix elements $M_{21} = \frac{-ik_x c_{\perp j}^2}{\rho_{j0}}$ and $M_{41} = \frac{-ik_z c_{\parallel j}^2}{\rho_{j0}}$ should be $M_{21} = \frac{-ik_x c_{\perp j}^2}{n_{j0}}$ and $M_{41} = \frac{-ik_z c_{\parallel j}^2}{n_{j0}}$, which will affect the pressure $P \neq 0$ modes. Accordingly, these terms in the 'pdrf.m' code should also be corrected. Fig.2 (see the below Fig.1) in the paper should also be updated by the below Fig.2.
- 2. The MATLAB code 'pdrf.m' will meet roundoff error when the non-zero elements of matrix M has $max(|M_{ij}|)/min(|M_{ij}|) > 10^{16}$ and thus can not calculate the low frequency mode correctly. This can be resolved by changing the line in function 'pdrfsolver()'

d = eig(M,A);

to

MA=AM;d0=vpa(eig(MA),16);d=double(d0);

We do a further benchmark with SI unit $B_0=8.0\text{E-9}$, c=2.9979E8, $\epsilon_0=8.854\text{E-12}$, $\gamma_{\parallel j}=\gamma_{\perp j}=5/3$ and input file 'pdrf_SI.in':

ms ns vsy vsz csz epsnjx epsnjy qs vsx csp -1.602E-19 9.109E-31 0.0 4.631E6 4.631E6 0.0 8.7E6 0.0 0.0 0.0 1.602E-19 1.673E-27 8.7E6 0.0 0.0 9.360E4 9.360E4 0.0 0.0 0.0

which gives $\beta_e = 4.0$, $\beta_i = 3.0$, $\omega_{ce} = -1.407 \times 10^3$, $\omega_{ci} = 0.766$, $c_{se} = 4.631 \times 10^6$, $c_s = 1.430 \times 10^5$, $\omega_{pe} = 1.664 \times 10^5$ and $v_A = 5.9 \times 10^4$. For $k = k_{\parallel}$, the analytical solutions include: (a) $\omega^2 \simeq \omega_{pe}^2 + k^2 c_{se}^2$; (b) $k \gg 1$, $\omega^2 \simeq k^2 c^2$, $\omega \simeq \omega_{ce}$, $\omega \simeq \omega_{ci}$; (c) $k \ll 1$, $\omega^2 \simeq k^2 (c_{si}^2 + \frac{m_e}{m_i} c_{se}^2) = k^2 c_s^2$, $\omega^2 \simeq k^2 v_A^2$. The benchmark results are shown in Fig.3.

Other minor corrections:

1. In Fig.1, Fig.4 and Fig.5, the x-label kc should be kc/ω_{ce} , although $\omega_{ce} = 1$ in those test cases.

^{*}Current affiliation: School of Physics, Peking University, Beijing 100871, China.

Figure 1: Previous Fig.2, the thresholds β_{\perp} for firehose and mirror modes are correct, but the quantitative value of γ is incorrect.

Figure 2: Correction of previous Fig.2. The quantitative value of γ is corrected.

Figure 3: Benchmark of $k = k_{\parallel}$ modes with $\beta \neq 0$.

- 2. Eq.(9), a typo, $\delta p_{\perp} = 2p_{\perp}(1 \frac{p_{\perp}}{p_{\parallel}})\delta B_{\perp}$ should be $\delta p_{\perp} = 2p_{\perp}(1 \frac{p_{\perp}}{p_{\parallel}})\delta B_{\perp}/B_0$. This does not affect the main text and the code.
- 3. Table 3, all ω should be $-\omega$.

The author would like to thank Mr. Nicholas Francken and Dr. Yana Maneva at the KU Leuven in Belgium for the feedbacks and benchmarks.