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Abstract

A general, fast, and effective approach is developed for numerical calculation of kinetic plasma dispersion relations.
The plasma dispersion function is approximated by J-pole expansion. Subsequently, the dispersion relation is trans-
formed to a standard matrix eigenvalue problem of an equivalent linear system. The result is accurate for J = 8
except the solutions that are the little interesting heavily damped modes. In contrast to conventional approaches,
such as Newton’s iterative method, this approach can give either all the solutions in the system or a few solutions
around the initial guess. It is also free from convergent problems. The approach is demonstrated from electrostatic
one-dimensional and three-dimensional dispersion relations, to electromagnetic kinetic magnetized plasma dispersion
relation for bi-Maxwellian distribution with parallel velocity drift.

Program summary

Title of program: PDRK
Catalogue identifier:
Program summary URL:
Program obtainable from: CPC Program Library, Queen University of Belfast, N. Ireland
Computer for which the program is designed and others on which it has been tested: Computers: Any computer
running MATLAB 7. Tested on Lenovo T430.
Operating systems under which the program has been tested: Windows 8
Programming language used: MATLAB 7
Memory required to execute with typical data: 500 M
No. of lines in distributed program, including test data, etc.: 700
No. of bytes in distributed program, including test data, etc.: 30 000
Distribution format: .tar.gz
Nature of physical problem: Solving kinetic dispersion relations for multi-species plasmas.
Method of solution: Transforming to an equivalent linear system and then solving as matrix eigenvalue problem.
Restrictions on the complexity of the problem: Not suitable for heavily damped modes and only non-relativistic ver-
sion at present.
Typical running time: About 1 minutes on a Intel 2.60 GHz PC.
Unusual features of the program: Can give all interesting solutions fastly and without convergent difficulty.
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PACS: 52.27.Cm, 52.35.Qz, 52.35.-g, 52.35.Fp, 52.25.Dg

1. Introduction

Given the richness of waves and instabilities in astrophysical, space, laser, and laboratory plasmas, studying the
corresponding linear dispersion relations of different plasma systems is of practical interest. However, except for some
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simple cases, the dispersion relations are usually too complicated to be solved either analytically or even numerically.
The multi-fluid plasma dispersion relation has been numerically solved generally using matrix method in a previ-

ous work, i.e., PDRF[1].
At present, several multi-component magnetized kinetic plasma dispersion relations solvers are available, such

as WHAMP by Ronnmark[2, 3], NHDS by Verscharen et al. [4], and solvers by Gary et al. [5, 6], by Willes and
Cairns[7, 8] and by Lin et al.[9], among others. However, all these solvers obtain the dispersion relations from the
determinant of the corresponding 3-by-3 dielectric tensor using a given initial guess. These solvers are usually time
consuming and have difficulty showing a complete picture of the modes in the system. Furthermore, these solvers may
also suffer from convergence problems because the plasma dispersion function Z(ζ) and Bessel functions (especially
in high-order cyclotron frequencies, e.g., ω > 10Ωc, where Ωc is the cyclotron frequency) have several solutions
around a given frequency. Thus, a careful selection of the initial guess is required to make it converge to the solution
we want.

In this work, we extend our previous work, a multi-fluid dispersion relation solver[1], to a general kinetic version,
but still maintain the use of a full-matrix approach. In contrast, two additional steps are required in the kinetic version:
solving for the plasma dispersion function Z(ζ) and seeking an equivalent linear system. The first step is accomplished
by J-pole expansion (Padé approximation) as used by Martin et al.[10] and Ronnmark[2, 3]. The first step has also
been used by Cereceda and Puerta[11] to solve the electrostatic 1D (ES1D) system. Physical interpretations of the
Padé approximation of Z(ζ) are given by Tjulin et al.[12] and Robinson and Newman[13]. The second step is more
difficult and should be treated on a case-to-case basis as we can see in the following sections.

2. Electrostatic systems

We start with simple electrostatic systems to show how our approach can be implemented.

2.1. Electrostatic 1D
First, we solve the simplest multi-component electrostatic 1D (ES1D) problem with drift Maxwellian distribution

fs0 = ( ms
2πkBTs

)1/2 exp[− (v−vs0)2

2kBTs
]. The dispersion relation is

D = 1 +

S∑
s=1

1
(kλDs)2 [1 + ζsZ(ζs)] = 0, (1)

where λ2
Ds =

ε0kBTs

nsq2
s

, vts =

√
2kBTs

ms
and ζs =

ω−kvs0
kvts

. Unmentioned notations are standard. The plasma dispersion
function can be approximated using J-pole expansion

Z(ζ) ' ZJ(ζ) =

J∑
j=1

b j

ζ − c j
, (2)

where J = 8 is used by Ronnmark [2, 3] and J = 2, 3, 4 are provided by Martin et al.[10], producing accurate results
for most domains (except y <

√
πx2e−x2

when x � 1, with ζ = x + iy), especially in the upper plane. However, the
method does not perform well for heavily damped modes, which are of little interest anyway. For completeness, the
coefficients c j and b j for J = 4, J = 8 and J = 12 (see Appendix A) are provided in Table 1. Note the useful relations∑

j b j = −1,
∑

j b jc j = 0 and
∑

j b jc2
j = −1/2.

Combining (1) and (2), yields

1 +
∑

s

∑
j

bs j

(ω − cs j)
= 0, (3)

with bs j =
b jc jvts

kλ2
Ds

and cs j = k(vs0 + vtsc j). An equivalent linear system can be obtained as follows:

ωns j = cs jns j + bs jE, (4a)
E = −

∑
s j ns j, (4b)
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Table 1: The coefficients c j and b j for J = 4[10], J = 8[2] and J = 12 (Appendix A) under J-pole approximations of Z(ζ), where the asterisk
denotes complex conjugation.

b1=0.546796859834032 + 0.037196505239277i c1=1.23588765343592 - 1.21498213255731i
J = 4 b2=-1.046796859834027 + 2.101852568038518i c2=-0.378611612386277 - 1.350943585432730i

b(3 : 4)=b∗(1 : 2) c(3 : 4)=−c∗(1 : 2)
b1=-1.734012457471826E-2-4.630639291680322E-2i c1=2.237687789201900-1.625940856173727i
b2=-7.399169923225014E-1+8.395179978099844E-1i c2=1.465234126106004-1.789620129162444i

J = 8 b3=5.840628642184073+9.536009057643667E-1i c3=0.8392539817232638-1.891995045765206i
b4=-5.583371525286853-1.120854319126599E1i c4=0.2739362226285564-1.941786875844713i

b(5 : 8)=b∗(1 : 4) c(5 : 8)=−c∗(1 : 4)
b1=-0.004547861216840 + 0.000621096229879i c1=2.978429162453205 - 2.049696666440972i
b2=0.215155729059403 - 0.201505401705763i c2=-2.256783783969929 - 2.208618411911446i
b3=0.439545043457674 - 4.161084685092405i c3=1.673799856114519 - 2.324085194217706i

J = 12 b4=-20.216967308177410 + 12.885503528244977i c4=1.159032034062764 - 2.406739409567887i
b5=67.081488119986460 - 20.846345891864550i c5=-0.682287637027822 - 2.460365014999888i

b6=-4.801467372237129e+01 - 1.072756140299431e+02i c6=0.225365375295874 - 2.486779417872603i
b(7 : 12)=b∗(1 : 6) c(7 : 12)=−c∗(1 : 6)

Table 2: Comparison of the Landau damping solutions using the matrix method and the original Z(ζ) function. Here, ω is normalized by
ωpe =

√
nee2/ε0me.

kλDe ωM
r (J = 4) ωM

i (J = 4) ωM
r (J = 8) ωM

i (J = 8) ωM
r (J = 12) ωM

i (J = 12) ωZ
r ωZ

i
0.1 0.9956 9.5E-3 1.0152 1.7E-5 1.0152 9.5E-8 1.0152 -4.8E-15
0.5 1.4235 -0.1699 1.4156 - 0.1534 1.4157 -0.1534 1.4157 -0.1534
1.0 2.0170 -0.8439 2.0459 - 0.8514 2.0458 -0.8513 2.0458 -0.8513
2.0 3.2948 - 2.6741 3.1893 - 2.8272 3.1891 -2.8272 3.1891 -2.8272

which is an eigenvalue problem of a S J × S J dimensional eigen matrix M, i.e., ωX = MX, with S J = S × J and
X = {ns j}. The singularity in the denominator of (3), which is encountered in conventional methods, can be canceled
by using the transformation (4). Hence, the matrix method can easily support multi-component systems.

For Langmuir wave Landau damping, calculating the largest imaginary part solution using matrix method (ωM)
and the original Z(ζ) function (ωZ)[14] are shown in Table 2. We can see that the result of the matrix method is
accurate in 10−4 when J = 8 and the error for J = 4 is also small (10%). Thus, we have verified that our approach is
feasible. In principle, infinite numbers of frequency solutions exist for a fixed wave vector k (the physical discussions
can be found in Ref.[15] and references in). Fig.1 shows all the solutions of the matrix method and the solutions
using Z(ζ) function for kλDe = 0.8. The largest imaginary part solutions (first solution) are almost identical, which is
our objective. However, other heavily damped solutions should be excluded due to the poor approximation in those
ranges. For example, the error for the second solution between the Z(ζ) solution and the J = 8 solution is around 10%,
whereas the third solution is completely wrong for J = 8. Fortunately, for most studies, these heavily damped modes
are of little interest. The J = 12 results can be more accurate (10−7) as shown in Table 2 and Fig.1. In principle,
Eq.(1) has no singularity for k , 0. Given the existence of multiple solutions, if the initial guess is not good, then root
finding cannot converge to the desired solutions.

For the two-frequency-scale ion acoustic mode, besides the Langmuir mode ω = 2.0459 − 0.8513i, the largest
imaginary part solution obtained from the matrix method (J = 8) is also consistent with the solution obtained from
the Z(ζ) function, e.g., Ti = Te, mi = 1836me, kλDe = 1, gives ω = 0.0420 − 0.0269i. Hereafter, J = 8 will be used as
default.

We further check the electron bump-on-tail mode (s = e, b), with Tb = Te, vb = 5vte and nb = 0.1n0 (ne = n0 − nb).
Both J = 8 matrix method and root finding using Z(ζ) function give the same largest imaginary part solution ω =

3
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Figure 1: Comparison of all the solutions obtained from the matrix method and the Z(ζ) function.
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0.9785 + 0.2000i for kλDe = 0.2. The J = 4 matrix method gives ω = 0.9772 + 0.2076i. Fig.2 shows ω and γ vs. k for
the above parameters, where the first three largest imaginary part solutions from the matrix method (J = 8) and one
solution from Z(ζ) function are shown. ωZ is identical to ωM . However, different initial guesses should be tested to
find other solutions when we using the Z(ζ) function. By contrast, no initial guess is required when using the matrix
method. Therefore, with matrix method, no important solutions are missed.

2.2. Harris dispersion relation

We go further to solve a more complicated example, including the n-th (n = −∞ to∞) order cyclotron frequency,
i.e., the electrostatic 3D-magnetized (ES3D) Harris dispersion relation[16]

D = 1 +

S∑
s=1

1
(kλDs)2 [1 +

ω − kzvs0 − nΩs + λT nΩs

kzvzts

∞∑
n=−∞

Γn(bs)Z(ζsn)] = 0, (5)

where, λ2
Ds =

ε0kBTzs

ns0q2
s

, vts =

√
2kBTs

ms
, λT = Tz/T⊥, ζsn =

ω−kzvs0−nΩs
kzvzts

, Γn(b) = In(b)e−b, bs = k2
⊥ρ

2
cs, ρcs =

√
v2
⊥ts
Ωs

, In is the
modified Bessel function, and the equilibrium distribution is assumed to be drift bi-Maxwellian fs0 = f⊥(v⊥) fz(vz),
with f⊥ =

ms
2πkBTs⊥

exp[− msv2
⊥

2kBTs⊥
] and fz = ( ms

2πkBTs⊥
)1/2 exp[−ms(v‖−vs0)2

2kBTsz
]. The background magnetic field is assumed to be

B0 = (0, 0, B0), and the wave vector k = (kx, 0, kz) = (k sin θ, 0, k cos θ), which gives k⊥ = kx and k‖ = kz.
This dispersion relation contains infinite-order summation of Bessel functions. However, Eq.(5) is very similar

to Eq.(1). Thus, the transformation to an equivalent linear system/matrix is the same and straightforward. In the
computation, we only keep the first N Bessel functions, i.e., n = −N to N. The dimensions of the eigen matrix is
S NJ × S NJ, with S NJ = S × (2N + 1) × J. The singularity for kz → 0 around ω − nΩcs → 0 in (5) is removed after
the transformation.

2.2.1. Electron Bernstein modes
First, we benchmark the electron Bernstein modes (s = e). The result is shown in Fig.3(a), with parameter

ωpe = 2.5ωce. For the modes with frequency ω < 6ωc, considering only the N = 10-order Bessel functions is accurate

enough. The upper hybrid frequency calculated at the cold limit is ωUH =
√
ω2

c + ω2
p = 2.69, which is consistent with

the matrix solution in the limit k⊥ρc → 0. Fig.3(a) also agrees with Fig.9.8 in Ref.[16]. The corresponding ES1D3V
particle-in-cell (PIC) simulation (ion immobile, k = k⊥) verification is also shown in Fig.3(b), where good agreement
is observed.

2.2.2. Anisotropic instabilities
Second, we benchmark the anisotropic instabilities with Ref.[17]. The contour plot of the growth rate γ/ωc is

shown in Fig.4, with ωp = ωc and N = 4. The results agree with Fig.2 in Ref.[17].

3. Electromagnetic dispersion relation

In the above section, we have shown that the matrix method can solve the kinetic dispersion relations. In addi-
tion, the results are accurate enough even if we used Padé approximation to the Z function, which gives us enough
confidence with the approach to extend its application further to the magnetized electromagnetic (EM3D) dispersion
relations, which has not been solved well using conventional approaches.

3.1. The dispersion relation

The equilibrium distribution is still assumed to be drift bi-Maxwellian as in Sec.2.2, and also B0 = (0, 0, B0) and
k = (kx, 0, kz). The dispersion relation can be derived as[18]∣∣∣∣∣∣∣∣∣

Kxx −
c2k2

ω2 cos2 θ Kxy Kxz + c2k2

ω2 sin θ cos θ
Kyx Kyy −

c2k2

ω2 Kyz

Kzx + c2k2

ω2 sin θ cos θ Kzy Kzz −
c2k2

ω2 sin2 θ

∣∣∣∣∣∣∣∣∣ = 0, (6)
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with K = I +
∑

s
ω2

ps

ω2

[∑
n
{
ζ0Z(ζn) − (1 − 1

λT
)[1 + ζnZ(ζn)

}
Xn + 2η2

0λT L
]
, where

Xn =

 n2Γn/b inΓ′n −(2λT )1/2ηn
n
α
Γn

inΓ′n n2/bΓn − 2bΓ′n i(2λT )1/2ηnαΓ′n
−(2λT )1/2ηn

n
α
Γn −i(2λT )1/2ηnαΓ′n 2λTη

2
nΓn

 , (7)

ηn = ω+nΩ
kzvTz

, λT =
Tz
T⊥

, b = ( kxvT⊥
Ω

)2, α = kxvT⊥
Ω

, v2
Tz

=
kBTz

m , v2
T⊥

= kBT⊥
m and the matrix components of L are all zero,

except for Lzz = 1.

3.2. The linear transformation

To seek an equivalent linear system, the Maxwell’s equations

∂t E = c2∇ × B − J/ε0, (8a)
∂t B = −∇ × E, (8b)

do not need be changed. We only need to seek a new linear system for J = ←→σ · E. It is easy to find that after J-pole
expansion, the relations between J and E has the following form:

 Jx

Jy

Jz

 =


a11 +

∑
sn jm

bsn jm11

ω−csn jm11
a12 +

∑
sn jm

bsn jm12

ω−csn jm12
a13 +

∑
sn jm

bsn jm13

ω−csn jm13

a21 +
∑

sn jm
bsn jm21

ω−csn jm21
a22 +

∑
sn jm

bsn jm22

ω−csn jm22
a23 +

∑
sn jm

bsn jm23

ω−csn jm23

a31 +
∑

sn jm
bsn jm31

ω−csn jm31
a32 +

∑
sn jm

bsn jm32

ω−csn jm32
a33 +

∑
sn jm

bsn jm33

ω−csn jm33
+ d33ω


 Ex

Ey

Ez

 . (9)

Fortunately, noting the relations in Z function (
∑

j b j = −1,
∑

j b jc j = 0 and
∑

j b jc2
j = −1/2) and in Bessel functions

[
∑∞

n=−∞ In(b) = eb,
∑∞

n=−∞ nIn(b) = 0,
∑∞

n=−∞ n2In(b) = beb], we find that ai j = 0 (i, j = 1, 2, 3) and d33 = 0. Eq.(9)
can be changed further to

 Jx

Jy

Jz

 = −


b11
ω

+
∑

sn j
bsn j11

ω−csn j

b12
ω

+
∑

sn j
bsn j12

ω−csn j

b13
ω

+
∑

sn j
bsn j13

ω−csn j
b21
ω

+
∑

sn j
bsn j21

ω−csn j

b22
ω

+
∑

sn j
bsn j22

ω−csn j

b23
ω

+
∑

sn j
bsn j23

ω−csn j
b31
ω

+
∑

sn j
bsn j31

ω−csn j

b32
ω

+
∑

sn j
bsn j32

ω−csn j

b33
ω

+
∑

sn j
bsn j33

ω−csn j


 Ex

Ey

Ez

 . (10)

Combining Eqs.(8) and (10), the equivalent linear system for (6) can be obtained as

ωvsn jx = csn jvsn jx + bsn j11Ex + bsn j12Ey + bsn j13Ez,
ω jx = b11Ex + b12Ey + b13Ez,
Jx = jx +

∑
sn j vsn jx,

ωvsn jy = csn jvsn jy + bsn j21Ex + bsn j22Ey + bsn j23Ez,
ω jy = b21Ex + b22Ey + b23Ez,
Jy = jy +

∑
sn j vsn jy,

ωvsn jz = csn jvsn jz + bsn j31Ex + bsn j32Ey + bsn j33Ez,
ω jz = b31Ex + b32Ey + b33Ez,
Jz = jz +

∑
sn j vsn jz,

ωEx = −c2kzBy − Jx/ε0,
ωEy = c2kzBx − c2kxBz − Jy/ε0,
ωEz = c2kxBy − Jz/ε0,
ωBx = kzEy,
ωBy = −kzEx + kxEz,
ωBz = −kzEy,

(11)

which yields a sparse matrix eigenvalue problem. The elements of the eigenvector (Ex, Ey, Ez, Bx, By, Bz) still rep-
resent the original electric and magnetic fields. Thus, the polarization of the solutions can also be obtained in a
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straightforward manner. The dimension of the matrix is NN = 3 × (S NJ + 1) + 6 = 3 × [S × (2 × N + 1) × J + 1] + 6.
The coefficients are

bsn j11 = ω2
psb j(1 − kzb j0/csn j)n2Γn/bs,

b11 =
∑

sn j ω
2
psb j(kzb j0/csn j)n2Γn/bs,

bsn j12 = ω2
psb j(1 − kzb j0/csn j)inΓ′n,

b12 =
∑

sn j ω
2
psb j(kzb j0/csn j)inΓ′n,

bsn j21 = −bsn j12 , b21 = −b12,
bsn j22 = ω2

psb j(1 − kzb j0/csn j)(n2Γn/bs − 2bsΓ
′
n),

b22 =
∑

sn j ω
2
psb j(kzb j0/csn j)(n2Γn/bs − 2bsΓ

′
n),

bsn j13 = ω2
psb j[c j/λT s − nωcsb j0/(csn jvtzs)]Γn/bs,

b13 =
∑

sn j ω
2
psb j[nωcsb j0/(csn jvtzs)]Γn/bs,

bsn j31 = bsn j13 , b31 = b13,

bsn j23 = −iω2
psb j[c j/λT s − nωcsb j0/(csn jvtzs)]

√
(2λT s)Γ′nbs,

b23 = −i
∑

sn j ω
2
psb j[nωcsb j0/(csn jvtzs)]

√
(2λT s)Γ′nbs,

bsn j32 = −bsn j23 , b32 = −b23,
bsn j33 = ω2

psb j[(vs0/vtzs + c j)c j/λT s − nωcsb j0(1 + nωcs/(csn j)v2
tzs)/kz]2λT sΓn,

b33 =
∑

sn j ω
2
psb j[n2b j0/(csn jv2

tzskz)]2λT sΓn,

csn j = kzc jvtzs + kzvs0 − nωcs,

(12)

where b j0 = vs0 + (1 − 1/λT s)c jvtzs.
If ai j , 0, then the equivalent linear transformation is still straightforward. However, the eigenmatrix will not be

sparse (the ES1D and ES3D eigenmatrices in Sec.2 are not sparse, see Appendix B for the sparse ones). If d33 , 0,
then the equivalent linear transformation will be more complicated. For our purposes, we do not need to discuss these
cases.

4. Benchmarks and applications

The PDRK code is developed based on the above method. We now benchmark this code and show some typical
applications. Default parameters for the succeeding cases are c2 = 104, B0 = 1, me = 1, qe = −1, ε0 = 1.

4.1. Benchmark with fluid solver PDRF

First, we compare PDRK with the fluid solver PDRF[1]. Fig.5 shows the results at the cold limit with parallel
propagation (k = kz). In PDRF, we set Te = Ti = 0; in PDRK, we set Te = Ti = 0.01 � 1. The real frequencies
in PDRK (ωK) and in PDRF (ωF) are almost identical. However, the kinetic damping is not zero as in the fluid
framework, especially the cyclotron damping for ions, which is apparent in Panel (b). This cyclotron damping is not
predicted in the fluid theory.

Fig.6 shows the results for warm plasma with perpendicular propagation. We see that the fluid version results are
close to the kinetic version results at small k (kc/ωce < 2), but deviates at large k. This kinetic correction (Bernstein
modes) from the harmonics of the cyclotron frequency is also not predicted in fluid theory.

A further test (Fig.12) of the electron Bernstein modes, which is quasi-electrostatic and makes use of the parame-
ters in Fig.3, gives similar results between PDRK-EM3D and PDRK-ES3D. Thus, for this step, PDRK-EM3D works
well.

4.2. Parallel propagation kinetic modes

The kinetic dispersion relation for parallel propagation modes[16, 18] is relatively simple to solve because the
effects of the higher-order cyclotron harmonics are zero. One branch is the same as the ES1D dispersion relation
Eq.(1). The other two branches are given by

D(k, ω) = 1 −
k2c2

ω2 +
∑

s

ω2
ps

ωkvts
Z

(
ω ± ωcs

kvts

)
= 0. (13)
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Eqs.(1) and (13) are solved by root finding with the original Z function[19] and comparing with PDRK. A typical
result is shown in Fig.7. We find a good agreement between the two methods. In addition, the ion and electron
cyclotron damping and the Landau damping are clearly shown. However, too many extraneous solutions exist in the
PDRK results. Most of the heavily damped solutions are not shown in the figure. The solutions represented by the red
solid line (ωR) in the figure should be real solutions. At large k (e.g., kc/ωce > 7, where PDRK solutions still agree
with ωR but not shown), the damping rate of several artificial solutions are smaller than ωR, which makes it difficult
to separate the real and artificial solutions directly.

To this step, PDRK-EM3D works well for Ts‖ = Ts⊥ and vs0 = 0. For the heavily damped solutions, keeping
all the interesting solutions while removing the artificial solutions is usually not easy. Besides the heavily damped
solutions, the artificial solutions roughly satisfy ωr − nΩc ∝ k‖ and γ ∝ k‖ (come from the poles ζ − c j → 0 of J-pole
expansion). Therefore, this process can also be used to remove some of the artificial solutions. Several of the ES3D
artificial solutions in Fig.8 are removed based on this property.

When a sparse matrix is not used, the computation time is around O(NNα) with 2 < α < 3 and the memory required
is around O(NN2). A typical personal computer with 4 GB memory can calculate NN up to 7000 (NN = 7000, S = 2,
J = 8, give N ' 60 ) in minutes. Thus, for modes with frequency ω < 60Ωci, all the solutions in the system can be
obtained easily. When a sparse matrix is used, NN can reach up to 106. Thus N can be up to 104. The standard sparse
matrix algorithm can solve one or several solutions around the initial guess.

4.3. Landau damping of lower hybrid wave

Now, we benchmark the Landau damping of lower hybrid wave (LHW) using a real mass ratio mi/me = 1836,
where large N should be used to make the solutions convergent. For the electrostatic case, with k2ρ2

e � 1, ωci � ω �
ωpe and k‖/k � 1, the analytical solution ω = (ωr, γ) for LHW can be found in Ref.[20]. We use the same parameters
(ωpe = ωce, k‖/k⊥ = 0.066, Te = Ti) as in the Fig.1 of Ref.[20] for the benchmark because this has also been verified
by first-principle PIC simulations in that paper. The results are shown in Fig.8, where the electrostatic assumption
works well for large k. For small k (k⊥ρce < 0.04), the electromagnetic effects should be included, which is consistent
with the results on fluid frequency and polarization in a previous study[1].

Note that several limits for the parameters have been used to obtain the analytical solution. Similar limits have
also been used for warm EM LHW (see e.g., [8]). Therefore, it is not surprising that the analytical solution does not
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Figure 8: Landau damping of lower hybrid wave. Solutions from PDRK-ES3D (red, N = 150), PDRK-EM3D (blue, N = 50), and the analytical
solution (dash green line) in Ref.[20]. It took about 1 CPU hour to compute the data in this figure.

hold for large k (k⊥ρce > 0.4) in the figure. For fusion (e.g., [21]) or space studies, the approximate analytical solution
is not always valid. Thus, PDRK can serve as a numerical tool for a wider range of parameters.

For this step, we have shown that PDRK-EM3D works well also for N ≥ 50 by using a sparse matrix, although an
initial guess is required and the computational time is longer.

4.4. Firehose and mirror modes
Firehose and mirror modes are typical unstable modes driven by pressure anisotropic T‖ , T⊥. For cold electrons,

the approximate analytical kinetic dispersion relations for the firehose mode is ω2 = ω2
A[ bi

1−Γ0(bi)
+

βi⊥−βi‖

2 ]. For the
mirror mode, it is ζiZ(ζi) =

ηi
βi⊥Γ1(bi)

− (1 − ηi), with ηi = βi‖/βi⊥.
A typical result is shown in Fig.9, where ωpe/ωce = 2, mi/me = 100, ωA = k‖vA = 0.01ωci and βe = 0.08. The

PDRK solutions agree with the analytical solutions for both the firehose and mirror modes. The small deviation is not
surprising because the analytical solutions are not accurate.

4.5. Whistler beam mode
The beam vs0 , 0 can also drive instabilities. We benchmark the whistler beam mode here. The parameters are

similar to Fig.8.8 of Ref.[5], with s = b, c, i, mi/me = 1836, ni = 1.0e4, nb = 0.1ni, nc = 0.9ni, Tc = Ti = Tb/10 =

0.5556 and vb0 = −9vc0 = 2.108, which yield ωpe = 100ωce, βc = 1.0 and vb0 = 2.0vtc. The ω and γ vs. (kz, kx) results
are shown in Fig.10. The most unstable mode is the parallel propagation mode ( k = k‖), which is consistent with
Gary’s conclusion[5].

4.6. New anomalous Doppler shift
With PDRK, it was the first time that we can see a complete picture of the waves and instabilities in a kinetic

system. New modes which are unknown in previous studies, may now be found. Several examples of new modes
have been found by PDRK. We show one of them here, namely, a new anomalous Doppler effect.

The Lorentz Doppler shift for relativistic cold fluid plasma has been verified by PDRF[1]. Here, we are interested
in the Doppler asymmetry of the electron and ion beams in kinetic non-relativistic plasmas. The parameters (ωpe =

100ωce, mi = 1836me, Ti = Te = 0.01, θ = 1.5528 = 88.97◦ and vd = 0.99) are taken similar to those in Fig.1
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of Ref.[22] for instability of the lower hybrid-like waves driven by parallel current. The current is taken by electron
beam in Ref.[22]. We also consider an ion beam and solve the dispersion relations for the following two cases: (a)
ve0 = vd, vi0 = 0; (b) ve0 = 0, vi0 = −vd. Here, the thermal velocity vts and drift velocity vd are all non-relativistic,
i.e., vts, vd < 0.01c � c. If the system is Galilean invariant, then the solution ωa for (a) and ωb for (b) should satisfy
ωa = ωb − k‖vd. The foregoing also means that the growth rate will not change (γa = γb) for the same k.

Evidently, the ES dispersion relations (1) and (5) are Galilean types, i.e., ωa = ωb − k‖vd. In common understand-
ing, the EM3D dispersion relation (6) should also be Galilean when vts, vd � c. However, as the results show in Fig.11,
we find that the Galilean Doppler effect is not present for both real frequency and growth rate, i.e., ωa , ωb − k‖vd

and γa , γb. Detailed discussion of the physics behind this interesting result is not within the scope of the present
work and may be explored further. The purpose of the result shown here is to demonstrate that PDRK can be useful
and effective in revealing new modes.

4.7. Dispersion surface

The 2D structure of ω vs. (kx, kz) (dispersion surface[23]) is shown in Fig.12 for electron Bernstein wave (EBW).
This type of figure is helpful in displaying the fine structure of the dispersion relations in (k⊥, k‖) space and in revealing
the relations among different modes. It is clearly shown in Panel (b) that the solutions are separated by cyclotron
frequencies, i.e., the solution nωc < ω < (n + 1)ωc (n = 0, 1, 2, ...) exists for any k. In Fig.12, we only keep N = 10,
and both real and artificial solutions are shown. To see the fine structure of the real solutions more clearly, further
processing is required to remove the artificial solutions, which is the main disadvantage of the present version of
PDRK.

4.8. Others

In the above benchmarks, no apparent numerical problems are found. However, this does not mean that we can
apply PDRK for all cases because only approximations of Z function are used. In WHAMP[2], the Z function is also
approximated but J-pole expansion is used. A further approximation is needed for the Bessel function summation.
Thus, in principle, PDRK-EM3D will give more accurate results than WHAMP. Similar issues regarding the validity
of Padé approximation for Z is discussed in detail in the WHAMP report[2]. Based on our results, the error for J = 8
is less than 10−4, which may bring some artificial growing modes. If the same solution also exists for other J (e.g.,
J = 4, 12), it is more likely to be a real solution. Otherwise, care should be exercised in treating this solution. We
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Figure 12: Dispersion surface (b) from PDRK-EM3D, using the EBW parameters in Fig.3 and c2 = 102. The ω vs. k⊥ (a) result is close to the
ES3D result in Fig.3, which confirms that EBW is (quasi-) electrostatic.

can distinguish real and artificial solutions by using different J. The artificial solutions change when J changes. By
contrast, the real solutions do not change that much.

5. Summary and discussion

A general kinetic plasma dispersion relation solver, PDRK (three versions are included at present: ES1D, ES3D,
EM3D), is developed, where the equilibrium distribution function is assumed to be drift bi-Maxwellian. For other
non-Maxwellian distribution functions, the J-pole expansion (Appendix A) of the corresponding new Z functions[14]
should be obtained first. Note that the relativistic effect (e.g., [24–26]) is not included in the present study as this would
make the solution more complicated. However, in principle, it can also be treated using Padé approximation[25].
Although PDRK is more accurate than PDRF, the latter is still advantageous in some cases because it can handle more
configurations, such as relativistic systems, local non-uniform systems, and systems where collisions are considered.
In addition, it does not produce artificial solutions. For practical applications, one can use PDRF to obtain rough
solutions, and then use these to provide initial guesses for PDRK or use them for assistance in removing the artificial
solutions in PDRK. Besides the multi-fluid model, PDRK also provides a tool to check the validity of other reduced
models, such as Darwin[19] and gyro-kinetic[9, 27] models.

For systems with small N (e.g., N < 60 for two species) or unstable modes, PDRK works excellently and is
applicable to most cases used. For large N (e.g., N > 60), especially in studying the effect of nΩc to the modes (e.g.,
LHW), the performance of PDRK is limited mainly by the computational time and memory. However, this concern
may be remedied by using sparse matrices. Further optimization is possible. For example, we do not need to treat N
equally for each species, e.g., for LHW, we can use large Ni but small Ne. The main disadvantage of PDRK is that the
artificial solutions originate from the poor approximation for strongly damped modes.

Compared with conventional solvers, the PDRK solver is fast and can give all solutions. Therefore, no important
solutions are missed. It is also free from convergence problems. Hence, this solver can find wide applications in
space, astrophysical, laser, and laboratory plasma studies.
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Appendix A. Arbitrary J-pole expansion

The J-pole expansion coefficients b j and c j are provided only for small J in literature. Here, based on the study
of Ronnmark[2], we develop a scheme to calculate the numerical coefficients for any J. This is possible because we
do not need the analytical expressions. The J-pole expansion is

Z(ζ) ' ZJ
A(ζ) =

∑J−1
k=0 pkζ

k

q0 +
∑J

k=1 qkζk
, (A.1)

with q0 = 1, should be matched with the following two-side approximation

Z(ζ) '


∑∞

k=0 akζ
k ' i

√
πe−ζ

2
− ζ

∑∞
n=0(−ζ2)n Γ(1/2)

Γ(n+3/2) , ζ → 0∑∞
k=0 a−kζ

−k ' iσ
√
πe−ζ

2
−

∑∞
n=0

Γ(n+1/2)
Γ(1/2)ζ2n+1 , ζ → ∞

(A.2)

where

σ =


0 , IM(ζ) > 0,
1 , IM(ζ) = 0,
2 , IM(ζ) < 0,

(A.3)

and Γ is Euler’s Gamma function. A further expansion is e−ζ
2

=
∑∞

n=0
ζ2n

n! . However, iσ
√
πe−ζ

2
is omitted, which does

not match well for the range y <
√
πx2e−x2

when x � 1. The system of equations to be solved are

p j =
∑ j

k=0 akq j−k, 1 ≤ j ≤ I (A.4a)

pL− j =
∑ j

k=0 a−kqL+k− j, 1 ≤ j ≤ K (A.4b)

where I + K = 2J, and p j = 0 for j > J − 1 and j < 0, and q j = 0 for j > J and j < 0. Thus 2J equations determine
2J coefficients p j and q j in (A.1). The derivation of (A.4) is similar to that of Eqs.(III-5) and (III-7) in Ronnmark[2].
Eqs.(A.4) are solved using matrix inversion. The ‘residue()’ function in MATLAB is used to calculate b j and c j in
(2) from (A.1). The results for J = 12 using I = 16 equations of (A.4a) and K = 8 equations of (A.4b) are given in
Table.1.

Usually, a large J gives better approximations. However, this is not always the case. Test should be made before
using them. Moreover, the truncated error when using double precision data can accumulate to 10−11.

Calculating the J-pole expansions for other equilibrium distribution functions[14] is also straightforward. We
merely replace the coefficients ak and a−k in (A.2).

Appendix B. Equivalent sparse matrix for ES1D system

As mentioned, the equivalent matrix from Eq.(4) for ES1D system is not sparse. An equivalent sparse matrix for
ES1D system can be constructed as following:

ωns j = cs jns j + bs jE, (B.1a)
ωE = −

∑
s j cs jns j −

∑
s j bs jE. (B.1b)

This is similar by changing the ES1D Vlasov-Poisson system to the ES1D Vlasov-Ampere system[15]. Eq.(B.1b) can
be further simplified to be ωE = −

∑
s j cs jns j, because

∑
s j bs j = 0. The ES3D matrix in Sec.2.2 can be changed to

sparse matrix in a similar manner.
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Appendix C. PDRK User Manual

The structure of PDRK is similar to that of PDRF, i.e., it contains two files: the main program “pdrk.m” and the
input data file “pdrk.in”. The input file has the following structure

qs ms ns Tzs Tps vs0

-1.0 1.0 4.0 1.0 1.0 0.0

1.0 4.0 4.0 1.0 1.0 0.0

More species can be added directly to new lines. Implementing “pdrk.m” in other languages (e.g., Fortran, C/C++,
Python) is also straightforward.
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