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The PDRK-EM3D code is found disagree with WHAMP code for hot plasma k⊥ 6= 0 modes.

This note redo the detailed derivations and to check where come the differences/bugs.
See also 2018-06-13 draft.
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1 PDRK Equation

The below equations come from the PDRK original paper with fixed several typos (highlighted
with red color) and are used in PDRK code.

1.1 Notations

The disagreement is likely from the Bessel function term relevant to k⊥ρts, and which is related to

the definition of vts, e.g., vts =
√

2kBTs
ms

v.s. vts =
√

kBTs
ms

.

1.1.1 ES3D

The notations for ES3D in the PDRK paper [Xie2016] are λ2
Ds = ε0kBTzs

ns0q2s
, vts =

√
2kBTs
ms

, λT =

Tz/T⊥, ζsn = ω−kzvs0−nΩs

kzvzts
, Γn(b) = In(b)e−b, bs = k2

⊥ρ
2
cs, ρcs = v⊥ts√

2Ωs
[to check], In is the modified

Bessel function, and the equilibrium distribution function is assumed to be drift bi-Maxwellian dis-

tribution fs0 = ns0f⊥(v⊥)fz(vz), with f⊥ = ms

2πkBTs⊥
exp[− msv2⊥

2kBTs⊥
] and fz = ( ms

2πkBTsz
)1/2 exp[−ms(v‖−vs0)2

2kBTsz
].

1.1.2 EM3D

We have noticed that the actual definition of some notations for PDRK-EM3D and ES3D are not
the same in the original paper.
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The actual notations1 for EM3D in the paper are λ2
Ds = ε0kBTzs

ns0q2s
, vts =

√
kBTs
ms

, λT = Tz/T⊥,

ζsn = ω−kzvs0−nΩs√
2kzvzts

, Γn(b) = In(b)e−b, bs = k2
⊥ρ

2
cs, ρcs =

√
kBTs⊥
ms

1
Ωs

= v⊥ts

Ωs
, In is the modified Bessel

function, and the equilibrium distribution function is assumed to be drift bi-Maxwellian distribu-

tion fs0 = ns0f⊥(v⊥)fz(vz), with f⊥ = ms

2πkBTs⊥
exp[− msv2⊥

2kBTs⊥
] and fz = ( ms

2πkBTsz
)1/2 exp[−ms(v‖−vs0)2

2kBTsz
].

Missed definitions in original paper2: ω2
ps = ns0q2s

ε0ms
, Ωs = qsB0

ms
.

1.2 EM3D Dispersion relation

The background magnetic field is assumed to be B0 = (0, 0, B0), and the wave vector k =
(kx, 0, kz) = (k sin θ, 0, k cos θ), which gives k⊥ = kx and k‖ = kz.

The dispersion relation is [Stix1992, Miyamoto2004]∣∣∣∣∣∣
Kxx − c2k2

ω2 cos2 θ Kxy Kxz + c2k2

ω2 sin θ cos θ

Kyx Kyy − c2k2

ω2 Kyz

Kzx + c2k2

ω2 sin θ cos θ Kzy Kzz − c2k2

ω2 sin2 θ

∣∣∣∣∣∣ = 0, (1)

with K = I +
∑

s

ω2
ps

ω2

[∑
n

{
ζ0Z(ζn)− (1− 1

λT
)[1 + ζnZ(ζn)]

}
Xn + 2η2

0λTL
]
, where in the original

paper [Xie2016]

Xn =

 n2Γn/b inΓ′n −(2λT )1/2ηn
n
α

Γn
−inΓ′n n2Γn/b− 2bΓ′n i(2λT )1/2ηnαΓ′n

−(2λT )1/2ηn
n
α

Γn −i(2λT )1/2ηnαΓ′n 2λTη
2
nΓn

 , (2)

and the correction one should be

Xn =

 n2Γn/b inΓ′n (2λT )1/2ηn
n
α

Γn
−inΓ′n n2Γn/b− 2bΓ′n −i(2λT )1/2ηnαΓ′n

(2λT )1/2ηn
n
α

Γn i(2λT )1/2ηnαΓ′n 2λTη
2
nΓn

 , (3)

with ηn = ω−nΩ√
2kzvTz

, λT = Tz
T⊥

, b = (kxvT⊥
Ω

)2, α = kxvT⊥
Ω

, v2
Tz

= kBTz
m

, v2
T⊥

= kBT⊥
m

, and the matrix

components of L are all zero, except for Lzz = 1.
Note: Γ′n(b) = (I ′n − In)e−b, I ′n(b) = (In+1 + In−1)/2, I−n = In.
18-09-28 11:50 The original sign of Xn13, Xn23, Xn31 and Xn32 are opposite and have been

corrected in this version. This is due to the misleading definition of Ωs = − qsB
ms

in Miyamoto2004,

which affects the α term. The sign of nΩ in ηn and ζn has also been corrected, i.e., ηn = ω+nΩs√
2kzvTz

and ζn = ω−kzvs0+nΩs√
2kzvzts

in Miyamoto2004.

1These notations are not written explicitly in the original paper, which should be mainly from Miyamoto2004.
2In Miyamoto2004, it seems use Ωs = − qsB0

ms
, not the standard Ωs = qsB0

ms
?! This will affect the sign before the

term nΩs and α. Is this why Ying TANG and Jin-song ZHAO at PMO found (2017-05) the polarization of E and
B in the PDRK solution are opposite to usual case?
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1.3 The linear transformation

To seek an equivalent linear system, the Maxwells equations

∂tE = c2∇×B − J/ε0, (4a)

∂tB = −∇×E, (4b)

do not need to be changed. We only need to seek a new linear system for J = ←→σ ·E. It is easy
to find that after J-pole expansion, the relations between J and E has the following form Jx

Jy
Jz

 =

 a11 +
∑

snjm
bsnjm11

ω−csnjm11
a12 +

∑
snjm

bsnjm12

ω−csnjm12
a13 +

∑
snjm

bsnjm13

ω−csnjm13

a21 +
∑

snjm
bsnjm21

ω−csnjm21
a22 +

∑
snjm

bsnjm22

ω−csnjm22
a23 +

∑
snjm

bsnjm23

ω−csnjm23

a31 +
∑

snjm
bsnjm31

ω−csnjm31
a32 +

∑
snjm

bsnjm32

ω−csnjm32
a33 +

∑
snjm

bsnjm33

ω−csnjm33
+ d33ω


 Ex

Ey
Ez

 .

(5)
Fortunately, noting the relations in Z function (

∑
j bj = −1,

∑
j bjcj = 0 and

∑
j bjc

2
j = −1/2)

and in Bessel functions [
∑∞

n=−∞ In(b) = eb,
∑∞

n=−∞ nIn(b) = 0,
∑∞

n=−∞ n
2In(b) = beb], we find

that aij = 0 (i, j = 1, 2, 3) and d33 = 0. Eq.(5) can be changed further to Jx
Jy
Jz

 = −iε0


b11
ω

+
∑

snj
bsnj11

ω−csnj

b12
ω

+
∑

snj
bsnj12

ω−csnj

b13
ω

+
∑

snj
bsnj13

ω−csnj

b21
ω

+
∑

snj
bsnj21

ω−csnj

b22
ω

+
∑

snj
bsnj22

ω−csnj

b23
ω

+
∑

snj
bsnj23

ω−csnj

b31
ω

+
∑

snj
bsnj31

ω−csnj

b32
ω

+
∑

snj
bsnj32

ω−csnj

b33
ω

+
∑

snj
bsnj33

ω−csnj


 Ex

Ey
Ez

 . (6)

Combining Eqs. (4) and (6), the equivalent linear system for (1) can be obtained as3

ωvsnjx = csnjvsnjx + bsnj11Ex + bsnj12Ey + bsnj13Ez,
ωjx = b11Ex + b12Ey + b13Ez,
iJx/ε0 = jx +

∑
snj vsnjx,

ωvsnjy = csnjvsnjy + bsnj21Ex + bsnj22Ey + bsnj23Ez,
ωjy = b21Ex + b22Ey + b23Ez,
iJy/ε0 = jy +

∑
snj vsnjy,

ωvsnjz = csnjvsnjz + bsnj31Ex + bsnj32Ey + bsnj33Ez,
ωjz = b31Ex + b32Ey + b33Ez,
iJz/ε0 = jz +

∑
snj vsnjz,

ωEx = +c2kzBy − iJx/ε0,
ωEy = −c2kzBx+c

2kxBz − iJy/ε0,
ωEz = −c2kxBy − iJz/ε0,
ωBx = −kzEy,
ωBy = +kzEx−kxEz,
ωBz = +kxEy,

(7)

which yields a sparse matrix eigenvalue problem. Again, the symbols vsnjx, jx,y,z and Jx,y,z used here
do not have direct physical meanings but are analogy to the perturbed velocity and current density
in the fluid derivations of plasma waves. The elements of the eigenvector (Ex, Ey, Ez, Bx, By, Bz)

3The signs of E and B terms in the right hand side of the below Maxwell equation ωE and ωB has been opposite
in the original paper [Xie2016], but the signs in the pdrk-em3d code are correct.
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still represent the original electric and magnetic fields. Thus, the polarization of the solutions can
also be obtained in a straightforward manner. The dimension of the matrix is NN = 3× (SNJ +
1) + 6 = 3× [S × (2×N + 1)× J + 1] + 6. The coefficients in original paper [Xie2014] are

bsnj11 = ω2
psbj(1− kzbj0/csnj)n2Γn/bs,

b11 =
∑

snj ω
2
psbj(kzbj0/csnj)n

2Γn/bs,

bsnj12 = ω2
psbj(1− kzbj0/csnj)inΓ′n,

b12 =
∑

snj ω
2
psbj(kzbj0/csnj)inΓ′n,

bsnj21 = −bsnj12 , b21 = −b12,
bsnj22 = ω2

psbj(1− kzbj0/csnj)(n2Γn/bs − 2bsΓ
′
n),

b22 =
∑

snj ω
2
psbj(kzbj0/csnj)(n

2Γn/bs − 2bsΓ
′
n),

bsnj13 = ω2
psbj[cj/λTs − nωcsbj0/(csnjvtzs)]n

√
2λTsΓn/αs,

b13 =
∑

snj ω
2
psbj[nωcsbj0/(csnjvtzs)]n

√
2λTsΓn/αs,

bsnj31 = bsnj13 , b31 = b13,
bsnj23 = −iω2

psbj[cj/λTs − nωcsbj0/(csnjvtzs)]
√

2λTsΓ
′
nαs,

b23 = −i
∑

snj ω
2
psbj[nωcsbj0/(csnjvtzs)]

√
2λTsΓ

′
nαs,

bsnj32 = −bsnj23 , b32 = −b23,
bsnj33 = ω2

psbj[(vs0/vtzs + cj)cj/λTs − nωcsbj0((1 + nωcs/csnj)/v
2
tzs)/kz]2λTsΓn,

b33 =
∑

snj ω
2
psbj[n

2bj0/(csnjv
2
tzskz)]2λTsΓn,

csnj = kzcjvtzs + kzvs0 − nωcs,
(8)

the correction one should be

bsnj11 = ω2
psbj(1− kzbj0/csnj)n2Γn/bs,

b11 =
∑

snj ω
2
psbj(kzbj0/csnj)n

2Γn/bs,

bsnj12 = ω2
psbj(1− kzbj0/csnj)inΓ′n,

b12 =
∑

snj ω
2
psbj(kzbj0/csnj)inΓ′n,

bsnj21 = −bsnj12 , b21 = −b12,
bsnj22 = ω2

psbj(1− kzbj0/csnj)(n2Γn/bs − 2bsΓ
′
n),

b22 =
∑

snj ω
2
psbj(kzbj0/csnj)(n

2Γn/bs − 2bsΓ
′
n),

bsnj13 = ω2
psbj[cj/λTs+nωcsbj0/(csnjvtzs)]n

√
2λTsΓn/αs,

b13 = −
∑

snj ω
2
psbj[nωcsbj0/(csnjvtzs)]n

√
2λTsΓn/αs,

bsnj31 = bsnj13 , b31 = b13,
bsnj23 = −iω2

psbj[cj/λTs+nωcsbj0/(csnjvtzs)]
√

2λTsΓ
′
nαs,

b23 = +i
∑

snj ω
2
psbj[nωcsbj0/(csnjvtzs)]

√
2λTsΓ

′
nαs,

bsnj32 = −bsnj23 , b32 = −b23,
bsnj33 = ω2

psbj[(cj/λTs+bj0nωcs/(csnjvtzs)](vs0/vtzs + cj)2λTsΓn,
b33 =

∑
snj ω

2
psbj[n

2ω2
csbj0/(csnjv

2
tzskz)]2λTsΓn,

csnj = kzcjvtzs + kzvs0+nωcs,

(9)

where bj0 = vs0 + (1 − 1/λTs)cjvtzs. To avoid the
√

2 in/from ζn and ηn, we have redefined

vtzs =
√

kBTsz
ms

=
√

2vzts =
√

2vTz in the above Eq.(9) and the PDRK code. Note that we have

used bsnj33 = ω2
psbj[(cj/λTs+bj0nωcs/(csnjvtzs)](vs0/vtzs+ cj)2λTsΓn, instead of the original bsnj33 =

ω2
psbj[(vs0/vtzs+cj)cj/λTs+nωcsbj0((1−nωcs/csnj)/v2

tzs)/kz]2λTsΓn, though they are equivalent (see
appendix).
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If aij 6= 0, then the equivalent linear transformation is still straightforward. If d33 6= 0, then
the equivalent linear transformation will be more complicated. For our purposes, we do not need
to discuss these cases.

We note that the major bug is a missed ω2
cs on b33 term. For k⊥ → 0 or Ts → 0, we have bs → 0,

and Γ0(bs) → 1, Γn(bs) → 0 for n 6= 0, thus b33 =
∑

snj ω
2
psbj[n

2ω2
csbj0/(csnjv

2
tzskz)]2λTsΓn = 0.

This is why the [Xie2014] version pdrk-em3d is correct for parallel propagation (k‖ 6= 0, k⊥ = 0)
mode and cold plasma (Ts → 0) mode.

2 Benchmark

Based on above new derivations, especially fixed a missed ω2
cs bug on b33 term, the mirror mode

case can agree with WHAMP now (see Fig.1), whereas the old version have bugs and disagree (see
Fig.2). The benchmark case is from Gary1993 book p131, Fig.7.4, with θ = 71◦, β//p = β//e = 1,
Tp,⊥/Tp,// = 2 and Te,⊥/Te,// = 1. And the WHAMP data is provided (2018-04-14) by Richard
Denton.

The input data in pdrk.in are

qs ms ns Tzs Tps vs0

-1 1 1.e6 24840. 24840. 0.0

1 1836 1.e6 24840. 49680. 0.0

and magnetic field B0=100.0E-9 T.

0 0.2 0.4 0.6
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0.008
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(b
) !

i/+
ci

PDRK-new
WHAMP

Figure 1: The new version of pdrk-em3d (2018-10-01 10:22) agree with WHAMP for the mirror
mode.

2018-10-01 14:36 There seems still exist slight differences for benchmark [Li2000] with θ 6=
0. [Li2000] Xing Li and Shadia Rifai Habbal, Electron kinetic firehose instability, Journal of
Geophysical Research: Space Physics, 105 (A12), 27377, 2000. [2018-10-03 08:20 update] However,
PDRK agrees well with Denton’s WHAMP result for Li2000 Fig1d (θ = 22◦) parameters (vA/c =
0.001, β‖e = 5, β‖p = 1, T⊥e/T‖e = 0.5), we used B = 100nT , np = ne = 52.9cm−3, T‖p = 0.470keV ,
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Figure 2: The old version of pdrk-em3d [Xie2014] disagree with WHAMP for the mirror mode
when k⊥ρcs 6= 0, due to the bugs in the original code.

T‖e = 2.35keV , T⊥e/T‖e = 0.5. The slight disagreement with Li2000 is probably due to the
difference of magnetic field B and density n (not given in the paper), though vA/c is the same.

2018-10-01 22:04 Benchmark Gary1993 book, Fig.7.1 and Fig.7.2, the θ = 0, T⊥ 6= T‖ modes
agree. The Fig.8.2 and Fig.8.3, θ = 0 beam modes also agree or at least very similar. 2018-10-02
12:56 Fig.8.6 θ 6= 0 beam modes also agree.

For summary, we think this new version of pdrk-em3d have pasted the essential
benchmarks and can be trust now.

3 More words

The good aspects of PDRK are that: It does not need initial guess of root finding and can gives
all the physical solutions (except strong damped solutions) quickly.

One can also use the sparse matrix eigen matrix function ’eigs()’ instead of ’eig()’ in MATLAB
if you only need one or several solutions around an initial guess value, which could be similar to
other iterative root finding solver (say WHAMP). For large Bessel function summation number N
(e.g., N > 10), the matrix dimension are large, and one can use ’eigs()’, which can be much faster
than ’eig()’. Thus, PDRK-EM3D is superior to WHAMP at all aspects.

The major drawback of pdrk is the extraneous roots. Strategies to filter out those extraneous
roots are required.

Possible to do: Rewrite a user friendly version of PDRK.

4 Acknowledgement

I should thank many people to draw my attention that the PDRK paper/code may not be incon-
sistent, especially the careful benchmark data provided (2018-06) by Prof. Richard Denton.
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A The electromagnetic dispersion relation

A.1 Basic idea

Firstly [Gurnett2005 sec.9.3]

k × (k ×E) +
ω2

c2
K ·E = 0, (10)

where E is the electric field of the wave and K is the dielectric tensor. And the current density

J = σ ·E. (11)

Once the conductivity tensor σ is known, the dielectric tensor can be computed using K =
I − σ/(iωε0). Compared with Eq.(1), we find that for EM3D dispersion relation

σ = −iε0
∑
s

ω2
ps

ω

[∑
n

{
ζ0Z(ζn)− (1− 1

λT
)[1 + ζnZ(ζn)]

}
Xn + 2η2

0λTL
]
. (12)

Combine the above equation and

Z(ζ) ' ZJ(ζ) =
J∑
j=1

bj
ζ − cj

, (13)

we can obtain Eq.(5) and the final transform matrix. Here, bj and cj are constants for given J , as
given in [Xie2016].

A.2 More details

Note
1

ω

b

ω − c
=
b

c

( 1

ω − c
− 1

ω

)
,

we have

Y ≡ ζ0Z(ζn)− (1− 1

λT
)[1 + ζnZ(ζn)]

=
J∑
j=1

ζ0bj
ζn − cj

− (1− 1

λT
)
[
1 +

J∑
j=1

ζnbj
ζn − cj

]
=

J∑
j=1

bj

[
1 +

cjkzvtzs + nΩs

ω − csnj

]
− (1− 1

λT
)
[
1 +

∑
bj +

J∑
j=1

bjcj
ζn − cj

]
= −1 +

J∑
j=1

bjcjkzvtzs + bjnΩs

ω − csnj
− (1− 1

λT
)

J∑
j=1

bjcjkzvtzs
ω − csnj

= −1 +
J∑
j=1

bj(cjkzvtzs/λT + nΩs)

ω − csnj
,
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where we have defined csnj = kzvs0 + nΩs + kzvtzscj and used
∑J

j=1 bj = −1, and thus

A ≡ Y

ω
= − 1

ω
+

1

ω

J∑
j=1

bj(cjkzvtzs/λT + nΩs)

ω − csnj

= − 1

ω
+

J∑
j=1

bj(cjkzvtzs/λT + nΩs)/csnj
ω − csnj

−
J∑
j=1

bj(cjkzvtzs/λT + nΩs)/csnj
ω

=
J∑
j=1

bj(cjkzvtzs/λT + nΩs)/csnj
ω − csnj

+
J∑
j=1

bj[1− (cjkzvtzs/λT + nΩs)/csnj]

ω

=
J∑
j=1

bj
csnj

[(cjkzvtzs/λT + nΩs)

ω − csnj
+
kzbj0
ω

]
=

J∑
j=1

bj
csnj

(csnj − kzbj0
ω − csnj

+
kzbj0
ω

)
,

where we have defined bj0 = vs0 + (1− 1/λT )cjvtzs, and note that cjkzvtzs/λT +nΩs = csnj − kzbj0.
And

ηnA =
ω − nΩs

kzvtzs

J∑
j=1

bj
csnj

(csnj − kzbj0
ω − csnj

+
kzbj0
ω

)
=

J∑
j=1

bj
csnjkzvtzs

[
(csnj − kzbj0)

(
1 +

kzvs0 + kzvtzscj
ω − csnj

)
+ kzbj0 −

kzbj0nΩs

ω

]
=

J∑
j=1

bj
csnjkzvtzs

[
(csnj − kzbj0)

(kzvs0 + kzvtzscj)

ω − csnj
− kzbj0nΩs

ω
+ (csnj − kzbj0) + kzbj0

]
= − 1

kzvtzs
+

J∑
j=1

bj
csnjvtzs

[
(csnj − kzbj0)

(vs0 + vtzscj)

ω − csnj
− bj0nΩs

ω

]
= − 1

kzvtzs
+

J∑
j=1

bj
csnjvtzs

(csnjcjvtzs/λT + nΩsbj0
ω − csnj

− bj0nΩs

ω

)
,
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where we have used that csnjcjvtzs/λT + nΩsbj0 = (kzvs0 + nΩs + kzvtzscj)cjvtzs/λT + nΩsvs0 +
nΩs(1− 1/λT )cjvtzs = (cjkzvtzs/λT + nΩs)(vs0 + vtzscj) = (csnj − kzbj0)(vs0 + vtzscj). And

η2
nA =

ω − nΩs

kzvtzs

{
− 1

kzvtzs
+

J∑
j=1

bj
csnjvtzs

[
(csnj − kzbj0)

(vs0 + vtzscj)

ω − csnj
− bj0nΩs

ω

]}
= − ω

k2
zv

2
tzs

+
nΩs

k2
zv

2
tzs

+ (ω − nΩs)
J∑
j=1

bj
csnjkzv2

tzs

[
(csnj − kzbj0)

(vs0 + vtzscj)

ω − csnj
− bj0nΩs

ω

]
= − ω

k2
zv

2
tzs

+
nΩs

k2
zv

2
tzs

+
J∑
j=1

bj
csnjkzv2

tzs

[
(csnj − kzbj0)(vs0 + vtzscj)

(
1 +

kzvs0 + kzvtzscj
ω − csnj

)
+
bj0n

2Ω2
s

ω
− bj0nΩs

]
= − ω

k2
zv

2
tzs

+
nΩs

k2
zv

2
tzs

+
J∑
j=1

bj
csnjkzv2

tzs

[
(csnj − kzbj0)

kz(vs0 + vtzscj)
2

ω − csnj
+
bj0n

2Ω2
s

ω

]
+

J∑
j=1

bjcj
kzvtzs

= − ω

k2
zv

2
tzs

+
nΩs

k2
zv

2
tzs

+
J∑
j=1

bj
csnjkzv2

tzs

[
(csnj − kzbj0)

kz(vs0 + vtzscj)
2

ω − csnj
+
bj0n

2Ω2
s

ω

]
,

where we have noticed (csnj − kzbj0)(vs0 + vtzscj) − bj0nΩs = (cjkzvtzs/λT + nΩs)(vs0 + vtzscj) −
bj0nΩs = (vs0cjkzvtzs/λT +vs0nΩs+vtzscjcjkzvtzs/λT +vtzscjnΩs)−nΩsvs0−nΩs(1−1/λT )cjvtzs =

(vs0cjkzvtzs/λT + vtzscjcjkzvtzs/λT + nΩscjvtzs/λT ) = csnjcjvtzs/λT , and used
∑J

j=1 bjcj = 0.
Use Eq.(3) and compare with Eq.(5):

• A has no constant term, ⇒ a11 = a12 = a21 = a22 = 0.

•
∑∞

n=−∞ nΓn = e−b
∑∞

n=−∞ nIn = e−b
∑∞

n=1 n(In− I−n) = 0, and ηnA has only constant term
− 1
kzvtzs

, ⇒ a13 = a31 = 0.

•
∑∞

n=−∞ Γ′n = e−b
∑∞

n=−∞( In+1+In−1

2
− In) = 0, and ηnA has only constant term − 1

kzvtzs
, ⇒

a23 = a32 = 0.

•
∑∞

n=−∞ Γn = e−b
∑∞

n=−∞ In = 1. Thus using η2
nA, the first two terms of σ33, i.e., terms ω1

and ω0 are, −iε0
∑

s ω
2
ps

[∑
n 2λTΓn

(
− ω

k2zv
2
tzs

+ nΩs

k2zv
2
tzs

)
+

2η20λT
ω

]
= −iε0

∑
s ω

2
ps

[
− 2λT

ω
k2zv

2
tzs

+

2ωλT
k2zv

2
tzs

]
= 0, ⇒ a33 = 0 and d33 = 0.

Not used yet:
∑∞

n=−∞ nΓ′n = e−b
∑∞

n=−∞ n( In+1+In−1

2
− In) = e−b

∑∞
n=1 n( In+1+In−1−I−n+1−I−n−1

2
−

In + I−n) = 0.
After the above steps, we can obtain Eq.(6) and corresponding coefficients in Eq.(9). For

examples

• b11 =
∑

s ω
2
ps

∑
n
n2Γn

bs

∑J
j=1

bjkzbj0
csnj

=
∑

snj ω
2
psbj(kzbj0/csnj)n

2Γn/bs.

• bsnj11 = ω2
ps
n2Γn

bs

bj(csnj−kzbj0)

csnj
= ω2

psbj(1− kzbj0/csnj)n2Γn/bs.
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• b12 =
∑

s ω
2
ps

∑
n inΓ′n

∑J
j=1

bjkzbj0
csnj

=
∑

snj ω
2
psbj(kzbj0/csnj)inΓ′n.

• bsnj12 = ω2
psinΓ′n

bj(csnj−kzbj0)

csnj
= ω2

psbj(1− kzbj0/csnj)inΓ′n.

• bsnj21 = −bsnj12, b21 = −b12.

• b22 =
∑

s ω
2
ps

∑
n(n2Γn/bs − 2bsΓ

′
n)
∑J

j=1
bjkzbj0
csnj

=
∑

snj ω
2
psbj(kzbj0/csnj)(n

2Γn/bs − 2bsΓ
′
n).

• bsnj22 = ω2
ps(n

2Γn/bs − 2bsΓ
′
n)

bj(csnj−kzbj0)

csnj
= ω2

psbj(1− kzbj0/csnj)(n2Γn/bs − 2bsΓ
′
n).

• b13 = −
∑

s ω
2
ps

∑
n nΓn(

√
2λTs/αs)

∑J
j=1

bjbj0nΩs

csnjvtzs
= −

∑
snj ω

2
psbj[bj0nΩs/(csnjvtzs)]

√
2λTsnΓn/αs.

• bsnj13 = ω2
psnΓn(

√
2λTs/αs)

bj
csnjvtzs

(csnjcjvtzs/λTs+nΩsbj0) = ω2
psbj[cj/λTs+nΩsbj0/(csnjvtzs)]√

2λTsnΓn/αs.

• bsnj31 = bsnj13, b31 = b13.

• b23 = i
∑

s ω
2
ps

∑
n Γ′n(

√
2λTsαs)

∑J
j=1

bjbj0nΩs

csnjvtzs
= i
∑

snj ω
2
psbj[bj0nΩs/(csnjvtzs)]

√
2λTsΓ

′
nαs.

• bsnj23 = −iω2
psΓ
′
n(
√

2λTsαs)
bj

csnjvtzs
(csnjcjvtzs/λTs+nΩsbj0) = −iω2

psbj[cj/λTs+nΩsbj0/(csnjvtzs)]√
2λTsΓ

′
nαs.

• bsnj32 = −bsnj23, b32 = −b23.

• b33 =
∑

s ω
2
ps

∑
n 2λTsΓn

∑J
j=1

bjbj0n
2Ω2

s

csnjkzv2tzs
=
∑

snj ω
2
psbj[bj0n

2Ω2
s/(csnjkzv

2
tzs)]2λTsΓn.

• bsnj33 = ω2
ps2λTsΓn

bj(csnj−kzbj0)(vs0+vtzscj)2

csnjv2tzs
= ω2

psbj
(csnjcjvtzs/λT +bj0nΩs)(vs0+vtzscj)

csnjv2tzs
2λTsΓn

= ω2
psbj[(cj/λTs + bj0nΩs/(csnjvtzs)](vs0/vtzs + cj)2λTsΓn

= ω2
psbj[(vs0/vtzs + cj)cj/λTs + nΩsbj0(vs0/vtzs + cj)/(csnjvtzs)]2λTsΓn

= ω2
psbj[(vs0/vtzs + cj)cj/λTs + nΩsbj0(1− nΩs/csnj)/(kzv

2
tzs)]2λTsΓn.

B Refresh some memory

Checked the original derivations (2014 summer) of pdrk-em3d project, it starts (2014-05-31 to
14-06-05, and updated/benchmarked during 14-08-15 to 14-08-28) from the T⊥ = T‖ and vs0 = 0
dispersion relation in p400 of Xiwei Hu’s 2006 plasma theory book (in Chinese) and then use the
drift bi-Maxwellian version in Miyamoto2004 p209. And some notations come from the ES1D and
ES3D version. This is the reason of inconsistent notations/typos/bugs in PDRK-EM3D document
and code.

Last update: Wednesday 3rd October, 2018 13:04.
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