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The PDRK-EM3D code is found disagree with WHAMP code for hot plasma k; # 0 modes.
This note redo the detailed derivations and to check where come the differences/bugs.

See also 2018-06-13 draft.
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1 PDRK Equation

The below equations come from the PDRK original paper with fixed several typos (highlighted
with red color) and are used in PDRK code.

1.1 Notations

The disagreement is likely from the Bessel function term relevant to &, p;s, and which is related to

the definition of v, e.g., vy = ,/2’;‘3;% V.S, Upg = ,/%.

1.1.1 ES3D
The notations for ES3D in the PDRK paper [Xie2016] are \2,, = %{?S, Vs = %mi, A =
T./T., (o = %&:M, (b)) = I,(b)e™®, by = k2 p2,, pes = \%slzg [to check], I, is the modified

Bessel function, and the equilibrium distribution function is assumed to be drift bi-Maxwellian dis-

2 _
tribution fso = neofi(vy)f.(v,), with f| = T exp[—%] and f, = (Qﬂ,ZY;STSZ)l/Q exp[—mséZL—T:ZO)].

1.1.2 EM3D

We have noticed that the actual definition of some notations for PDRK-EM3D and ES3D are not
the same in the original paper.
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1.2 EMS3D Dispersion relation
The background magnetic field is assumed to be By = (0,0, By), and the wave vector k =
(kz,0,k;) = (ksin,0, k cos @), which gives k| =k, and kj = k..

The dispersion relation is [Stix1992, Miyamoto2004]

Ky, — ¢ ’; cos? 6 Kyy » K. + <& > sin ) cos 6
Kyw Ky, — Cw]; K;yz2 =0, (1)
k sin? 4

K., + <& sm@cos@ K., K, —

ﬁ)[l + Cn Z(Ca)] } X + 205 /\TL where in the original

paper [X1e2016]
n?T, /b inl, —(2Ar)" /2, 2T,
X, = —inT", n?Ly, /b — 20T i(2A\7)Y2nal” |, (2)
—(2Ar)2n, 2T, —i(2M7) *n,al, 2Arm2 Ty,
and the correction one should be
n’l,, /b inI"’, (2A7)?n, 2T,
X, = —inI", n?0, /b — 20T —i(2A7)?n,al" |, (3)
(2)\T)1/277ngfn i(2/\T)1/217nozF;I 20T,
wonfl g = ;@— b= (—kz’é“ )2, a = —k“(’z“, vy, = k’fn—Tz, vy, = —kBW?, and the matrix

Wlth 777), - \/ik'z’UTz’
components of L are all zero, except for L,, =1
(I' = I)e ®, I'(b) = (Ipy1 + In_1)/2, I, = I,,.

Note: I (b) = (1], — I,,)e™", I/
18-09-28 11:50 The original sign of X,,13, X,23, X,31 and X3 are opp081te and have been

corrected in this version. This is due to the misleading definition of €2

which affects the o term. The sign of n{2 in n, and ¢, has also been corrected ie, n, = %ZZ?TZ

and ¢, = % in Miyamoto2004.

!These notations are not written explicitly in the original paper, which should be mainly from Miyamoto2004.
— e BO, not the standard €2, = 420 Bo?1 This will affect the sign before the

2In Miyamoto2004, it seems use Q, =
term nf)s and «. Is this why Ying TANG and’ Jin-song ZHAO at PMO found (2017-05) the polarization of E and

B in the PDRK solution are opposite to usual case?



1.3 The linear transformation

To seek an equivalent linear system, the Maxwells equations

OE = 2V x B — J /e, (4a)
0B = -V x E. (4b)

do not need to be changed. We only need to seek a new linear system for J = o" - E. It is easy
to find that after .J-pole expansion, the relations between J and FE has the following form

a sn]mll a sn]m12 a sn]m13
Jx 1 + an]m w— Csnjmll 12 + an]m w— Csn]le 13 T an]m wb Csnjm13 Ex
_ sn]m21 sn]m22 snjm23
Jy - a21 + an]m w— Csnjmzl a22 + an]m w— CanmQQ (23 + an]m W—Csnjm23 Ey
JZ a31 + Z sn]m31 a32 + Z sn]m32 a33 + Z snjm33 + d33w EZ

snjm w— Csnjm31 snjm w— Csnjm32 snjm w— Csnjm33

(5)
Fortunately, noting the relations in Z function ( 3, b; = —1, > . bjc; = 0 and }_; bjcjz» =—1/2)
and in Bessel functions [>°7 L, (b) = €® Y07 nI,(b) =0, Y07 n%I,(b) = be’], we find

n=—oo

that a;; =0 (4,7 = 1,2,3) and d33 = 0. Eq. can be changed further to

m bsnjll bﬁ bsnj12 b13 snle
ng w + anj W—Csnj w + anj W—Csnj + an] w Csnj Ex
. ba1 bsnj21  bag bsnj22 b23 bsnj23
jy = —1€p w + anj o,l))—csnj w + an] "-;)_Csnj + an] w Csnj gy ' (6)
b3_1 snj31 b3_2 snj32 b33 sanS
* w + anj W—Csnj w + anj W—Csnj + an] W—Csnj N

Combining Egs. and @, the equivalent linear system for can be obtained asﬁ

( WUsnjz = ConjUsnjz 1+ snji1 Bz + benjiaBy + benjis k.,
Wiz = bii By + bio By + bisE,
iJg/e0 = Jz + anj Vsnjas
WUsnjy =  CsnjUsnjy T Dsnjo1 Bz + bsnjoa By + benjos Bz,
wiy = bo1 By + bog By + bas B,
in/EO = jy + anj Vsnjy,
WUspjz = ConjUsnjz 1 bsnjzi By + benjza By + benjzs .,
y Wi = bs1 By + bso 5y + b3z, (7)
iJ,Jeo = Jz+ anj Usnjzs
wE, = +c*k, By — iJ, /€0,
wk, = —?k, By +*k, B, — iJ, /€0,
wE, = —c*k, By, — iJ, /e,
wB, = —k.E,,
wB, = ko By ko B,
\ wB, = +kxEy7

which yields a sparse matrix eigenvalue problem. Again, the symbols vgy s, Jzy.» and J; , . used here
do not have direct physical meanings but are analogy to the perturbed velocity and current density
in the fluid derivations of plasma waves. The elements of the eigenvector (E,, E,, E,, B;, B, B)

3The signs of E and B terms in the right hand side of the below Maxwell equation wE and wB has been opposite
in the original paper [Xie2016], but the signs in the pdrk-em3d code are correct.



still represent the original electric and magnetic fields. Thus, the polarization of the solutions can
also be obtained in a straightforward manner. The dimension of the matrix is NN =3 x (SNJ +
1)+6=3x[Sx(2x N+1)xJ+1]+6. The coefficients in original paper [Xie2014] are

( bsnjll = wﬁsbj(l — /{:zbjo/csnj)n2f‘n/bs,
b1y = anj wf)sbj(k:zbjg/csnj)nQFn/bs,
bsnji2 = wf)sbj(l — k.bjo/Cng)inl,,
bio = anj wgsbj (k.bjo/Csnj)inI,,
bsanl = _bsnj12 ) b21 = _b12>
bsnj22 = wﬁsbj(l — kzbjo/Csnj)(n2Fn/bs — QbSF;I%
b2 = > anj Wsbi(k2bjo/ csnj) (n°Tn /s — 2b,T7),
bsnj13 = wzsbj [Cj/)\Ts - nwcsbjO/(Csnjvtzs)]n\/mrn/@sa
bi3 = D anj Wasbi[nWesbjo/ (Canjizs) /22D f s,
bsnj?;l = bsnj13 ) b31 = b137
bsnjos = _iw;%sbj ¢/ Ars — nwesbjo/ (CsnjUtZS)]\/Wi’“sF;z“sa
bas = —i anj wgsbj [nwesbio/ (ConiVtss )|V 2A s s,
bsnjzz = —bsnjos b3o = —bos,
bsnjs3 = w;%sbj[(vw/vtzs + Cj)cj/)‘Ts - nwcsbj0(<1 + nWCS/Csnj)/Ufzs)/k:Z]Q)‘TsFm
b3 = D onj Wisbi[bjo [ (Conjvi, k=) 125D,
\ Csnj = kzcjvtzs + szSO — NWes,

(8)

the correction one should be

( bsnjll = wzsbj(l — kzbjo/csnj)nQFn/bs,
b = > onj Was0j (kzbjo/ Csnj)n®Ts fbs,
bsnjiz = Wb (1 = k2bjo/Conj)inT,,
b1o = an]‘ wgsbj(kzbj()/csnj)inr;w
bsnjo1 = —bsnjiz ba1 = —bio,
bsnjgg = wﬁsbj(l — kzbjo/csnj)(n2Fn/bs — QbSF;),
bas = D onj Wpsbi(kzbjo/Cns) (T /bs — 20,17),
bsnjis = wgsbj [¢;/ Ars+nwesbjo/ (ConjVizs) |V 2 sl [ s, (9)
b13 = — anj Wgsbj [nwcsbjﬂ/(csnjvtzs)]nmrn/QM
bsanl = bsnj13 ) b31 = b137
bsnj23 = _iwgsbj [cj/>\Ts+nwcsbj0/(csnjvtzs)] V ZATSF;Lasa
bas = DI waobj[nweshjo/ (ConjVzs )|V 2A0s I v,
bsnj32 - _bsnj23 ) b32 = _b237
bsnj33 - Wf;sbj[(Cj/)\Ts+bj0nwcs/(Csnjvtzs)] (USO/Utzs + Cj)QATst
b3 = D anj Wasbi 7wl bjo [ (Conjvi gk )|12A0s Do,
L Csnj = kzcjvtzs + k’zUSO‘FW«ch;

where bjo = vso + (1 — 1/Aps)cjvr.s. To avoid the V2 in/from ¢, and 7,, we have redefined
Vips = ,/% = v2v,s = V/2vup, in the above Eq.@) and the PDRK code. Note that we have

used bgpj33 = wzsbj[(cj/ATs—i—bjonwcs/(csnjvtzs)](vso/vtzs +¢j)2ApsIy, instead of the original by, 35 =
W2 b;[(Vs0/Vezs 4 €5) €5 [ Arstnwesbjo (1—nwes [ Conj ) /V1,) [ k2] 2A0s D, though they are equivalent (see
appendix).



If a;; # 0, then the equivalent linear transformation is still straightforward. If ds;3 # 0, then
the equivalent linear transformation will be more complicated. For our purposes, we do not need

to discuss these cases.
We note that the major bug is a missed w?, on bsz term. For k; — 0 or Ty — 0, we have b, — 0,

and To(bs) — 1, Tyy(bs) — 0 for n # 0, thus bgz = Y wi bj[n*wibjo/ (Conjvi, k=) 12Ars Ly = 0.
This is why the [Xie2014] version pdrk-em3d is correct for parallel propagation (kj # 0, ki = 0)
mode and cold plasma (75 — 0) mode.

2 Benchmark

Based on above new derivations, especially fixed a missed w?, bug on b3 term, the mirror mode
case can agree with WHAMP now (see Fig., whereas the old version have bugs and disagree (see

Fig. The benchmark case is from Gary1993 book p131, Fig.7.4, with 6 = 71°, 8,,, = 8/, = 1,
Tpi/Tp) =2and T, /T, ;) = 1. And the WHAMP data is provided (2018-04-14) by Richard

Denton.
The input data in pdrk.in are

qs ms ns Tzs Tps vs0
-1 1 1.e6 24840. 24840. 0.0
1 1836 1.e6 24840. 49680. 0.0

and magnetic field BO=100.0E-9 T.

-7
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I
— 3t I —
& 1| o3 0.006 |
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I
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I % M M 3 % 9 =X X =X =X -
-1 ‘ ‘ 0 ‘ ‘ k
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kC/wpi kC/a}pi

Figure 1: The new version of pdrk-em3d (2018-10-01 10:22) agree with WHAMP for the mirror

mode.

2018-10-01 14:36 There seems still exist slight differences for benchmark [Li2000] with 6 #
0. [Li2000] Xing Li and Shadia Rifai Habbal, Electron kinetic firehose instability, Journal of
Geophysical Research: Space Physics, 105 (A12), 27377, 2000. [2018-10-03 08:20 update] However,
PDRK agrees well with Denton’s WHAMP result for Li2000 Figld (6 = 22°) parameters (v4/c =
0.001, Bje =5, Byp = 1, T'e/Tjje = 0.5), we used B = 100nT, n, = n. = 52.9cm™2, Tj, = 0.470keV,
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Figure 2: The old version of pdrk-em3d [Xie2014] disagree with WHAMP for the mirror mode
when k| p.s # 0, due to the bugs in the original code.

Tye = 2.35keV, T\ ./Tje = 0.5. The slight disagreement with Li2000 is probably due to the
difference of magnetic field B and density n (not given in the paper), though v4/c is the same.
2018-10-01 22:04 Benchmark Gary1993 book, Fig.7.1 and Fig.7.2, the 6 = 0, T\, # T} modes
agree. The Fig.8.2 and Fig.8.3, # = 0 beam modes also agree or at least very similar. 2018-10-02
12:56 Fig.8.6 6 £ 0 beam modes also agree.
For summary, we think this new version of pdrk-em3d have pasted the essential
benchmarks and can be trust now.

3 More words

The good aspects of PDRK are that: It does not need initial guess of root finding and can gives
all the physical solutions (except strong damped solutions) quickly.

One can also use the sparse matrix eigen matrix function ’eigs()’ instead of ’eig()’ in MATLAB
if you only need one or several solutions around an initial guess value, which could be similar to
other iterative root finding solver (say WHAMP). For large Bessel function summation number N
(e.g., N > 10), the matrix dimension are large, and one can use ’eigs()’, which can be much faster
than ’eig()’. Thus, PDRK-EM3D is superior to WHAMP at all aspects.

The major drawback of pdrk is the extraneous roots. Strategies to filter out those extraneous
roots are required.

Possible to do: Rewrite a user friendly version of PDRK.

4 Acknowledgement

I should thank many people to draw my attention that the PDRK paper/code may not be incon-
sistent, especially the careful benchmark data provided (2018-06) by Prof. Richard Denton.



A The electromagnetic dispersion relation

A.1 Basic idea
Firstly [Gurnett2005 sec.9.3]

w2
kx(kxE)+—5K-E=0,
c

(10)

where FE is the electric field of the wave and K is the dielectric tensor. And the current density

J=0-F.

(11)

Once the conductivity tensor o is known, the dielectric tensor can be computed using K =
I — o/(iweg). Compared with Eq. (1)), we find that for EM3D dispersion relation

2
. Wps

g = —1€ E
w

s

Combine the above equation and

.

T
Z(¢) Zg—c]

Jj=1

[Z {62(G) — (1~ %)[1 + 6 Z(C)] X + 20201 L]

(12)

(13)

we can obtain Eq. and the final transform matrix. Here, b; and ¢; are constants for given J, as

given in [Xie2016].

A.2 More details
Note

we have

y = goz<gn>—<1—71T>[1+an<<n>]

J

-3 Gobi 1—%)[1+;€f’ﬂ]

J
j=1 Cn —Cj J
J

J
g2 G RS Sl MAD

J=1

j=1
C] kzvtzs
w Csnj

J
— 14 Z bjCijUtzs + banS _ (1 _ i) Z bj _

= W — Conj A7

= —1+

i bi(ckovms/ A + n2)

= W — Csnj




where we have defined c;,,; = k,v50 + n8ds + k,vi.5¢; and used Z‘jjzl b; = —1, and thus

J
4 = Y l—l-lzbj cjkvtzs/)\T—i-nQ)
w W ow i — Conyj
7=1
_ Z bi(cjk Vs /AT + n8s) [ Cspj B i bi(cjk Vs /Ar 4+ n8s) [ conj
‘= W — Csnj p w
_ i bi(CikVzs/ A+ n8ds) [ Conj N i bi[1 — (¢jkvas/Ar + n8ds) [ Csnj]
: W — Csnj w
Jj=1 j=1
_ z“’: b; [(cjk s/ Ny +19) Kby } z": b; (CW Kibjo kzbj())
. Csnj W — Csnj w Csnj Csnj w ’
Jj=1 7j=1

where we have defined bjo = vy + (1 — 1/ A7) c;vp.s, and note that ¢k, vp.s /Ay +nQs = conj — k2bjo.
And

7 A — W — TLQS J bj (csnj — kzbj() 4 kzbj0>
" kzvtzs j=1 Csnj W — Cspj w

b

- Z — [(Csnj - kzbjO) (1 +

—1 Csnj kz Vtzs

kzvso + kzvtzs Cj

W — Cspj

= _ [(Csnj — kzbjo)

=1 Csnj kzvtzs

(]{TZUS() + kzvtzscj) . kzbj[)an

W — Csnj w

+ (Csnj — kzbjo) + kzbjo]

1 b,
= — + Z J |:(Csnj — kzbjo

kzvtzs =1 Csnjvtzs

)(Uso + Utzst) _ bj()TLQS]
— Csnj w

_ 1 i J bj (Csnjcjvtzs/)\T + nQSbjo _ bjoan>

kzvtzs j=1 Csnj/Utzs W — Csnj w



where we have used that cg,;jcjves/Ar + nQbjo = (kvso + N8ls + kVr25¢5) s /AT + N050 +
(1 — 1/ Ap)cjVizs = (CikUpas /A + 1) (V50 + VizsCy) = (Csnj — K2jo) (vso + viz2scj). And

mA =

w — nfl, { 1 d b; (V50 + Vp25€5) bjOan] }
— Csnj w

[(Csnj — k:bjo)

kzvtzs kzvtzs j=1 Csnjvtzs

J
w nfl,

= - + 5= + (w—nf)

2,,2 2
kzvtzs kz Utzs

b

2
-1 Csnj kz Uizs

) (USO + Utzscj) _ bjonQSi|
W — Cgnj w

[(Csnj — kzbjo

J

w an b; kovgo + ko veasc)
= TR T e [~ Rt v ) (1 ST
z " lzs z7lzs j=1 snjytvzHlzs sn,
bon?
70 5 — jonQS:|
w ns) J b, k. (vso + vizsc;)?  bjon?2 T b
= -5 +55 + —32[(csnj—/<:zbjo) e E 5}+ L7
kgvtzs kgvtzs j=1 Csnjkzvtzs W — Csnj w -1 kzvtzs
W nfl, J b,

= — + 3 + Z —JQ [(Csnj - kzbj())

2 202
kz(vs() + 'Utzscj) + bjOn Q3i|
29,2 2 . )
kzvtzs kzvtzs j=1 Csnjkzvtzs

W — Csnj w

where we have noticed (csn; — k:bjo)(Vso + VizsCj) — bjonSds = (CikVezs /A + 1) (V50 + VizsCj) —
bjonSls = (Vs0Cjk.Vizs/ Ar + V5018 s + Vp2sCi CiK Vs [ AT + Vizsc s ) — N 050 — NS (1— L/Ap)cv.s =
(vsoCjk vtzs/)\T + Vi2sCiCik Vs AT + NEUsCijVLs [AT) = CsnjCiViss /AT, and used Z 1 bjc; =0.

Use Eq.(3) and compare with Eq.(5):

e A has no constant term, = a7 = @12 = a91 = a9z = 0.

S o only=e?t>>  nl,=e"> > n(l,—I1.,) =0, and n,A has only constant term

n=—0oo

1 _ _
Fovis = Q13 = 31 = 0.

o > Il =¢? Zfzfoo(% —1I,,) = 0, and 7, A has only constant term —.—

n=-—00 kzvtzs’

Q93 — A3 — 0.

e Y™ TI,=¢e" Zn__oo I, = 1. Thus using n2 A, the first two terms of o33, i.e., terms w!

n=—0o0

and w” are, —iey Y, w?, [Z 22T, ( 7,7+ A > + 2"2JAT] = —i€g Y, Woy [ QATW +

Utzs z%tzs
2WAT

5202 :|:O,:>a33:()andd33:0.

2Vtzs

Not used yet: 500 nll, = e P32  p(lesithet 1y = o b3 p(lestlaslanslonny
I,+1_,)=0.

After the above steps, we can obtain Eq.@ and corresponding coefficients in Eq.@. For
examples

n?ly Y bikzbjo _
) b11 — ZS w1275 Zn % j=1 VO = ZSHJ (k? bjo/csnj)n Fn/b

Csnj

2 n F b; (C.sn] kzbj()) _ 2 2
® bsn]ll wps b n - = wpsbj(l — k:zbjo/csnj)n Fn/bs~



® by =3 w2, > inl), Z ihebo D onj Wisbi(k2bjo/ Conj)inT,.

Csn]

_ 2 s biCsnj—ksbjo) 2 TV
® bynjiz = wy inl', 2= = 0l bi(1 — kobjo/csng)inly,.

L bsanl = _bsnj127 byr = —bya.
L b22 = 23 wzs Zn<n2rn/b 2b I ) Z] 1 bjclzz:;jo - an] (k bJO/Can>(n2Fn/bs - 2bsF;L)
o bonjor = w2, (02T, /by — 26, 2lCena=hebio) — (2 4 (1 b /0ni) (02T Jby — 20,1

snj22 — n Conj - wps ]( z jO/csnj>(n n/bs 2bs n)

o big=— >, w2 3, L (Vg /o) Yo e = 57 w2 by [bjon s/ (CanjVizs) |V 2Azn T /s,

Jj=1 CsnjUtzs
® bsnjiz = wpsnI‘ (V2As /o) —Li—
V2 rsnly, .

o bsnj31 = bsnjl?n b3 = by3.

o byy =i 3, w2 3, T (V2Ars0n) 3oy 200 — 37 w2 b [bjon s/ (Consviss) |V 2Ars s,

Jj=1 CsnjVtzs

(CsnjCiVtzs/Ars +18sbj0) = wf,sbj [c;/Ars +12bj0/ (CsnjVtzs)]

Csnj Utzs

® bynjos = ZW;%SF;«L( 2)\Tsozs)m(csmcjvtzs/km—l—nﬂ bjo) = iw?,sbj[cj/)\Ts+anbj0/(csnjvtzs)]
vV 2)\T5Fnas.
L bsnj32 = _bsnj23a b3z = —bas.

o b33 = Zs ps Z QATSF Z] 1 i)sij(l:vis = anj w]%sbj [bjOnZQz/(csnjkzvl%zs)]2)‘T8Fn'
° bsnj33 w 2)\T3Fn (csnj—kzcsioj)iisso—i—wzsc]) — wz b csngc]vtzs/ATC—:j?)?zS: 5)(Vs0+Vtzs5C5) 2/\Tsr
= wpsb][(cj/)\;ps + bjonS2s / (CsnjVtzs) | (Vso /Vezs + €5)2A7s T

= wgsbj[(USO//Utzs + Cj>cj/)\Ts + anbjO<UsO/vtzs + Cj)/(csnjvtzs>]2)\Tan

= Wpj[(vs0/Vizs + )¢/ Ars + nQsbjo(1 — Qs /Cong) | (k:076)1207s .

B Refresh some memory

Checked the original derivations (2014 summer) of pdrk-em3d project, it starts (2014-05-31 to
14-06-05, and updated/benchmarked during 14-08-15 to 14-08-28) from the T, = Tj and vy = 0
dispersion relation in p400 of Xiwei Hu’s 2006 plasma theory book (in Chinese) and then use the
drift bi-Maxwellian version in Miyamoto2004 p209. And some notations come from the ES1D and
ES3D version. This is the reason of inconsistent notations/typos/bugs in PDRK-EM3D document
and code.

Last update: Wednesday 3¢ October, 2018 13:04.
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