Shifted Circular Tokamak Equilibrium with Application Examples

Hua-sheng Xie (谢华生, huashengxie@gmail.com)
Institute for Fusion Theory and Simulation, Department of Physics,
Zhejiang University, Hangzhou, 310027, People’s Republic of China

v1: March 16, 2013; Update: April 5, 2014

Abstract

We give a detailed description of large aspect ratio approximation ($\epsilon \equiv a/R_0 \ll 1$) Shafranov equilibrium, which is also called shifted circular equilibrium and related to $\alpha$-local equilibrium. Topics included: Jacobian and many other variables in both Shafranov coordinate and flux coordinate; comparing with direct numerical solutions; applications to GTC, orbit.m (trajectory following code), awcon.m (Alfvén wave continuum spectral code) and AMC (Alfvén eigen Mode Code). [draft]

1 Introduction

1.1 Flux surface shape

Defining the shifted circular equilibrium flux surface in terms of the usual cylindrical ($R, \phi, Z$) coordinate

$$R = R_0 + r_s \cos \theta_s - \Delta(r_s),$$
$$\phi_c = -\phi = -\zeta_s,$$
$$Z = r_s \sin \theta_s,$$

Figure 1: Flux surfaces for shifted circular equilibrium.
where $R_0$ is the major radius and the shift $\Delta(0) = 0$. The minus sign in (1b) is to keep Shafranov coordinate $(r_s, \theta_s, \zeta_s)$ right handed, $\phi_c$ is for cylinder and $\phi$ for torus.

Fig.1 shows the flux surfaces and coordinate system. Note the difference between $(r_s, \theta_s, \zeta_s)$ and usual torus coordinate $(r, \theta, \zeta)$.

Hereafter, we normalize $R_0$ and on axis $B_0$ to unity. All the discussions are for axisymmetric equilibria.

1.2 Metric tensor and Jacobian

Euclidean coordinate $r(x, y, z)$ in terms to arbitrary coordinate $(u^1, u^2, u^3)$ with

\[ x = x(u^1, u^2, u^3), \quad y = y(u^1, u^2, u^3), \quad z = z(u^1, u^2, u^3), \quad (2) \]

and vice versa

\[ u^1 = u^1(x, y, z), \quad u^2 = u^2(x, y, z), \quad u^3 = u^3(x, y, z). \quad (3) \]

Covariant vector basis

\[ e_1 = \frac{\partial r}{\partial u^1}, \quad e_2 = \frac{\partial r}{\partial u^2}, \quad e_3 = \frac{\partial r}{\partial u^3}. \quad (4) \]

Contravariant basis

\[ e^1 = \nabla u^1, \quad e^2 = \nabla u^2, \quad e^3 = \nabla u^3, \quad (5) \]

with the relations

\[ e_i = \frac{e^j \times e^k}{e^i \cdot (e^j \times e^k)}, \quad e^i = \frac{e_j \times e_k}{e_i \cdot (e^j \times e^k)}. \quad (6) \]

The covariant metric tensor

\[ g_{ij} = g_{ji} := \begin{pmatrix} e_1 \cdot e_1 & e_1 \cdot e_2 & e_1 \cdot e_3 \\ e_2 \cdot e_1 & e_2 \cdot e_2 & e_2 \cdot e_3 \\ e_3 \cdot e_1 & e_3 \cdot e_2 & e_3 \cdot e_3 \end{pmatrix}, \quad (7) \]

the contravariant tensor

\[ g^{ij} = g^{ji} := \begin{pmatrix} e^1 \cdot e^1 & e^1 \cdot e^2 & e^1 \cdot e^3 \\ e^2 \cdot e^1 & e^2 \cdot e^2 & e^2 \cdot e^3 \\ e^3 \cdot e^1 & e^3 \cdot e^2 & e^3 \cdot e^3 \end{pmatrix}, \quad (8) \]

and the Jacobian

\[ J = |e_i \cdot (e_j \times e_k)| = \sqrt{|g_{ij}|}, \quad (9) \]

or inverse Jacobian

\[ J^{-1} = |e^i \cdot (e^j \times e^k)| = \sqrt{|g^{ij}|}. \quad (10) \]

The transformation between covariant and contravariant basis are $e_i = g_{ij}e^j$ and $e^i = g^{ij}e_j$.

For axisymmetric coordinate $(\psi, \theta, \phi)$ with $\nabla \phi = 1/R \hat{\phi}$, the transformation relations are (see also, Chap. 5 in Ref.[3])

\[ \begin{pmatrix} \nabla \psi \\ \nabla \theta \\ \nabla \phi \end{pmatrix} = \begin{pmatrix} |\nabla \psi|^2 & \nabla \psi \cdot \nabla \theta & 0 \\ \nabla \theta \cdot \nabla \psi & |\nabla \theta|^2 & 0 \\ 0 & 0 & 1/R^2 \end{pmatrix} \begin{pmatrix} \nabla \theta \times \nabla \phi \cdot J \\ \nabla \phi \times \nabla \psi \cdot J \\ \nabla \psi \times \nabla \theta \cdot J \end{pmatrix}, \quad (11) \]
1.3 Flux coordinates

1 INTRODUCTION

For straight field line flux coordinates\(\text{[6]}\): (1) Choose \(\nu(\psi, \theta)\) for \(\zeta = \phi - \nu\) such that \(q \equiv B \cdot \nabla \zeta / B \cdot \nabla \theta = q(\psi)\) with \(r = r(\psi)\) a radial-like flux coordinate; (2) Additional freedom of choosing \(\theta\) to select Jacobian \(J = [\nabla \zeta \cdot (\nabla \psi \times \nabla \theta)]^{-1}\). Examples are: Hamada coordinates \(J = J_H(\psi)\) and Boozer coordinates \(J = J_B(\psi)/B^2\).

Another form of Boozer coordinate is

\[
B = g(\psi) \nabla \zeta + I(\psi) \nabla \theta + \delta(\psi, \theta) \nabla \psi. \tag{14}
\]

Noticing \(\nabla \phi = \hat{\phi}/R\) and using \(B \cdot \nabla \zeta = B \cdot \nabla \phi - \partial \nu \nabla p \cdot \nabla \theta\), and \(B \cdot \nabla \phi = g/R^2\), and \(B \cdot \nabla \theta = 1/(J q)\),

\[
\frac{\partial \nu}{\partial \theta} = \frac{g q J}{R^2} - q. \tag{15}
\]

Note that the solution \(\nu(\psi, \theta)\) can involve an arbitrary function of \(\psi\) and the Jacobian in \((\psi, \theta, \phi)\) system is equal to that in \((\psi, \theta, \zeta)\) system, \(J^{-1} = \nabla \zeta \cdot (\nabla \psi \times \nabla \theta) = \nabla \phi \cdot (\nabla \psi \times \nabla \theta)\).

The mixed representation of \(B\) (covariant for \(B_t\), contravariant for \(B_p\))

\[
B = g(\psi) \nabla \zeta + \nabla \psi_p, \tag{16}
\]

is often more convenient than the general (contravariant) flux representation

\[
B = \nabla \psi \times \nabla \theta + \nabla \psi_p^t, \tag{17}
\]

or Clebsch representation

\[
B = \nabla \alpha(\psi, \theta, \zeta) \times \nabla \psi = \nabla (\zeta - q \theta) \times \nabla \psi, \tag{18}
\]

where \(\psi = \psi_t = \Psi_t/2\pi\) and \(\psi_p = \Psi_p/2\pi\) are related to the toroidal and poloidal fluxes.

Using \(\text{[12]}\), we can convert \(\text{[16]}\) to covariant form

\[
B = g(\psi) \nabla \zeta + \left(\psi_p' \frac{J}{R^2} |\nabla \psi|^2\right) \nabla \theta + \left(-\psi_p' \frac{J}{R^2} \nabla \psi \cdot \nabla \theta\right) \nabla \psi, \tag{19}
\]

where \(\psi_p' = d\psi_p/d\psi = 1/q(\psi)\) and \(J = [\nabla \zeta \cdot (\nabla \psi_p \times \nabla \theta)]^{-1}\).

Using \(\text{[14]}\) and \(\text{[17]}\), in Boozer coordinate

\[
B^2 = B_t \cdot B_i = g(\psi) J^{-1} + \frac{I(\psi)}{q(\psi) J^{-1}}, \tag{20}
\]

\(^1\)Note: For non-flux coordinates, an average definition is \(q(\psi) \equiv \langle B \cdot \nabla \zeta / (B \cdot \nabla \theta) \rangle_q\).
1.4 Grad-Shafranov equation

i.e., $J_B = [g(\psi) + I(\psi)/q(\psi)]/B^2$.

In general, we may deform new flux coordinates using (Chap. 6 in Ref.[4])

\[
\theta_F = \theta_f + \frac{d\psi_p}{dr} G(r_f, \theta_f, \zeta_f), \quad \zeta_F = \zeta_f + \frac{d\psi_t}{dr} G(r_f, \theta_f, \zeta_f). \tag{21}
\]

Here, we mainly interested in the below two types of flux coordinates

\[
\theta_f = \theta + \frac{d\psi_p}{dr} G(r, \theta, \zeta), \quad \zeta_f = \zeta, \tag{22}
\]

and

\[
\theta_f = \theta, \quad \zeta_f = \zeta - \frac{d\psi_t}{dr} G(r, \theta, \zeta). \tag{23}
\]

1.4 Grad-Shafranov equation

The Grad-Shafranov equation for $\psi$ is \[1\]

\[
\nabla \cdot \left( \frac{\psi}{qR^2} \right) + q \frac{dp}{d\psi} + \frac{gq}{R^2} \frac{dg}{d\psi} = 0, \tag{24}
\]

with $d\psi/d\psi_p = q(\psi_p)$. Note, here $p = \beta/2$, with $\beta$ the plasma beta.

We consider low $\beta$ equilibrium with $\beta \sim \epsilon^2$. For boundary condition given by a circular conducting wall, to lowest order the equilibrium constant $\psi$ surfaces are concentric circles. To second order, the flux surfaces are shifted circles\(^2\), which are called Shafranov shift[5]. The third order will bring elliptical and triangular\(^3\), which will be neglected in this document.

Some orderings: $\psi \sim \epsilon^2$, $g = 1 + g_2$ with $g_2 \sim O(\epsilon^2)$. Since $B \cdot \hat{\phi} = 1 + g_2$, $\psi = \int B \cdot \nabla \phi dr = (r^2/2)[1 + O(\epsilon^2)]$, the term $\epsilon^2$ contributes only to ellipticity and triangularity and can be ignored, then $\nabla \psi = r \nabla r$ and $df/d\psi = (1/r) df/dr$.

Here also means the solution of (24) is

\[
\psi(R, Z) = \frac{r^2}{2} = \frac{(R - 1 + \Delta)^2 + Z^2}{2}. \tag{25}
\]

2 Solving the Shafranov Equilibrium

Here, we solve (24) to order $\epsilon^2$ to get the shift $\Delta(r)$.

2.1 Calculate the shift $\Delta(r)$

In this subsection, we calculate using Shafranov coordinate and omit the subscript indicates.

\(^2\)So, any calculations of concentric circle equilibrium to order $\epsilon^2$ without shift are meaningless. [However, you can argue this][2]

\(^3\)J. M. Greene, J. L. Johnson and K. E. Weimer, Tokamak Equilibrium, Physics of Fluids, 1971, 14, 671-683.
This part is mainly follow White 2001 book, with corrections of typos.

Partial derivatives
\[
\frac{\partial R}{\partial r} = \cos \theta - \Delta', \quad \frac{\partial R}{\partial \theta} = -r \sin \theta, \quad (26)
\]
\[
\frac{\partial Z}{\partial r} = \sin \theta, \quad \frac{\partial Z}{\partial \theta} = r \cos \theta, \quad (27)
\]

where \( \Delta' = d\Delta/dr \sim \epsilon \).

Using implicit function theorem
\[
\frac{\partial u}{\partial x} = -\frac{\partial (F,G)}{\partial (x,v)} \cdot \frac{\partial (F,G)}{\partial (u,v)}, \quad (28)
\]

with
\[
F(x,y;u,v) = 1 + r \cos \theta - \Delta - R, \quad G(x,y;u,v) = r \sin \theta - Z, \quad (29)
\]

and \( u = r, \quad v = \theta, \quad x = R, \quad y = Z \), we get
\[
\left( \begin{array}{cc}
\frac{\partial r}{\partial R} & \frac{\partial r}{\partial Z} \\
\frac{\partial \theta}{\partial R} & \frac{\partial \theta}{\partial Z}
\end{array} \right) = \frac{1}{r(1 - \Delta' \cos \theta)} \begin{pmatrix}
\cos \theta & r \sin \theta \\
\sin \theta & \cos \theta - \Delta'
\end{pmatrix}. \quad (30)
\]

Some necessary expressions for Grad-Shafranov euqaiton can be calculated
\[
\nabla r = \frac{\cos \theta}{1 - \Delta' \cos \theta} \hat{R} + \frac{\sin \theta}{1 - \Delta' \cos \theta} \hat{Z}, \quad (31)
\]
\[
\nabla \theta = -\frac{\sin \theta}{r(1 - \Delta' \cos \theta)} \hat{R} + \frac{(\cos \theta - \Delta')}{r(1 - \Delta' \cos \theta)} \hat{Z}, \quad (32)
\]
\[
\mathcal{J} = [\nabla \phi \cdot (\nabla r \times \nabla \theta)]^{-1} = \frac{1}{rR(1 - \Delta' \cos \theta)}, \quad (33)
\]
\[
\frac{1}{\mathcal{J}} \frac{\partial}{\partial \theta} \left( \frac{\mathcal{J} \nabla \theta \cdot \nabla \psi}{R^2 q} \right) = -\frac{\Delta' \cos \theta}{q} + O(\epsilon^2), \quad (34)
\]
\[
\frac{1}{\mathcal{J}} \frac{\partial}{\partial R} \left( \frac{\mathcal{J} \nabla r \cdot \nabla \psi}{R^2 q} \right) = \frac{1}{rR(1 - \Delta' \cos \theta)} \frac{\partial}{\partial R} \left[ \frac{r^2}{q} (1 + \Delta' \cos \theta - \cos \theta + O(\epsilon^2)) \right], \quad (35)
\]
\[
\nabla \left( \frac{1}{R^2 q} \nabla \psi \right) = \frac{\Delta' \cos \theta}{q} + \frac{1}{r} \left( \frac{r^2}{q} \right)' (1 + 2\Delta' \cos \theta - 2\cos \theta + \frac{r}{q} (\Delta'' \cos \theta - \cos \theta)). \quad (36)
\]

Substituting into (24) and keeping only the terms independent of \( \theta \), we get
\[
p' + gg' + \frac{f}{r} (rf)' = 0, \quad (37)
\]

which are all \( O(\epsilon) \), with \( f \equiv r/q \). For applications, we choose \( p(r) \) and \( q(r) \) freely to determine \( g \). While, since \( g_2 \sim O(\epsilon^2) \), we may use \( g = 1 \) for approximation.

Terms with \( \cos \theta \) give
\[
\Delta'' + \left[ \frac{2(rf)'}{rf} - \frac{1}{r} \right] \Delta' - \frac{2(rf)'}{f} - 1 - \frac{2rgg'}{f^2} = 0. \quad (38)
\]

\(^4\text{See also Ref.?? for the form with } R_0 \text{ and } B_0 \text{ written out explicitly.}\)
Eliminate $gg'$ in (38) and note

$$
(r f^2 \Delta')' = \left[ \frac{(r f)^2 \Delta'}{r} \right]' = r f^2 \{ \Delta'' + \left[ \frac{2(r f)'}{r f} - \frac{1}{r} \right] \Delta' \},
$$

we get

$$
\Delta' = \frac{1}{r f^2} \int_0^r (f^2 - 2 r p') r dr,
$$

and

$$
\Delta = \int_0^r \frac{dr}{r f^2} \int_0^r (f^2 - 2 r p') r dr.
$$

Note that normally $p' < 0$ so $\Delta' > 0$. One should also note that to avoid the intersecting of two flux surfaces, we need $\Delta' dr < dr$, i.e.,

$$
\Delta' < 1.
$$

An estimation of $\Delta'$ with $q = 3$, $a = 0.1$, $p' \simeq -\epsilon \simeq -a$, gives $\Delta' \simeq \frac{q^2}{a} \left[ \frac{1}{4} a^4 + \frac{2}{3} a^3 p' \right] \simeq \frac{q^2}{4} + \frac{2}{3} q^2 p' \simeq q^2 \epsilon \simeq 1$. We can see that $\Delta'$ is not that small as $O(\epsilon)$ but $O(q^2 \epsilon)!$ Usually, a more reasonable ordering of $q$ is $O(\epsilon^{-1/2})$ which will bring many troubles. To avoid this, we’d better use even smaller $\beta$, e.g., $O(\epsilon^3)$.

A typical result is shown in Fig.2.

For ballooning mode, we must consider the Shafranov shift. While, note that $\Delta \neq 0$ even though $p' = 0$. So, for Alfvén wave (AW) or eigenmodes (AEs) and many other applications, one may also consider the shift

---

5However, few analytical results can be found in literatures using this ordering.

6Many calculations or simulations showed that the shift effects are not that important for modes which are not driven by pressure gradient, e.g., zero-\(\beta\) ITG. So, choose as you like: simple or rigorous.
2.2 Comparing with numerical solver

For reference, the contravariant metric elements is calculated
\[ g^{ij} = \left\{ \nabla u^i \cdot \nabla u^j \right\} \simeq \begin{pmatrix} 1 + 2\Delta' \cos \theta & -\Delta' \sin \theta / r & 0 \\ -\Delta' \sin \theta / r & 1/r^2 & 0 \\ 0 & 0 & 1 - 2r \cos \theta \end{pmatrix}, \tag{43} \]

and covariant
\[ g_{ij} = \left\{ \frac{\partial r}{\partial u^i} \cdot \frac{\partial r}{\partial u^j} \right\} \simeq \begin{pmatrix} 1 - 2\Delta' \cos \theta / r & r\Delta' \sin \theta & 0 \\ r\Delta' \sin \theta & r^2 & 0 \\ 0 & 0 & 1 + 2r \cos \theta \end{pmatrix}, \tag{44} \]

and \( \mathcal{J} = \sqrt{|g^{ij}|^{-1}} \simeq r[1 + (r - \Delta') \cos \theta] \), which is consistent with (33).

2.2 Comparing with numerical solver

To give an intuitive impression of errors of the shifted circular approximation, we comparing the results with direct numerical solver of G-S equation.

Numerical solution (VMOMS[7] code) of Grad-Shafranov equation shows that shift-circular flux surface geometry is adequate for low \( \beta \). In Fig.3, \( \epsilon = a/R = 0.25 \).

For low \( \beta \sim \epsilon^2 (\beta_1 = 0.0403) \), the elongation \( E(E \sim 1 + 10^{-2}) \) and triangularity \( T (\sim 10^{-4}) \) effects are very small and can be omitted. However, when \( \beta \) is larger, this shifted circular equilibrium would not valid any more, as shown in the Fig.3 for \( \beta = 0.2015 \).

Fig.4 shows that Eq.(41) can calculate the Shafranov shift correctly.

2.3 Forms in Shafranov coordinate

Neglecting order \( \epsilon^2 \), using (16), for toroidal field[2]
\[ B_t(r, \theta) = \frac{q}{R} = B_{t0}(r)(1 - r \cos \theta) \simeq 1 - r \cos \theta, \tag{45} \]
where \( B_{t0} = I/R_0 \approx 1 \). For the poloidal field
\[ B_p = \frac{r}{q} |\nabla \phi \times \nabla r| = \frac{r}{qR(1 - \Delta' \cos \theta)} \simeq \frac{r}{q}[1 - (r - \Delta') \cos \theta], \tag{46} \]

One can find that \( q \) does not measure the local field line pitch
\[ \frac{\mathbf{B} \cdot \nabla \phi}{\mathbf{B} \cdot \nabla \theta} = q[1 - (r + \Delta') \cos \theta], \tag{47} \]
which varies on \( \theta \). Thus, the Shafranov coordinate is not a flux coordinate!\footnote{This is also true for \( \Delta(r) = 0 \) concentric circle case!}

Giving a flux coordinate \( \theta_f = \theta + K(r, \theta) \) and keeping \( \zeta_f = \zeta \) and \( r_f = r \), we have
\[ \frac{\mathbf{B} \cdot \nabla \phi}{\mathbf{B} \cdot \nabla \theta_f} = \frac{1}{\mathbf{B} \cdot \nabla \zeta} = \frac{q}{1 + \partial_\theta K}[1 - (r + \Delta') \cos \theta] = q, \tag{48} \]
2.3 Forms in Shafranov coordinate

**Figure 3:** $q$ and $p$ (normalized on axis) profiles for (a) $\beta_1 = 0.0403$ and (c) $\beta_2 = 0.2015$. (b) and (d), the corresponding elongation $E$ and triangularity $T$. (e), the corresponding Shafranov shift. (f), the flux surface contour.

**Figure 4:** $\Delta(r)$, analytical vs. numerical (VMOMS).
2.4 Forms in Boozer coordinate

SOLVING THE SHAFRANOV EQUILIBRIUM

\[
\frac{\partial \theta}{\partial K} = -(r + \Delta') \cos \theta, \quad (49)
\]
i.e.,

\[
\theta_f = \theta - (r + \Delta') \sin \theta. \quad (50)
\]

Fig. 5 shows the difference between Shafranov coordinate and flux coordinate. To plot this figure, we need the relation \(\theta(\theta_f)\), which is not explicit, instead of \(\theta_f(\theta)\) in (50). We calculate it using 1D interpolation instead of solving inverse function, as below

```matlab
1 theta0=le-5:pi/N:2*pi; 2 thetaf=theta0-(r+dlp).*sin(theta0); % Boozer coordinate 3 thetaftmp=theta0; 4 % cal theta_s using interp, since the inverse function is not explicit 5 theta=interp1(thetaf,theta0,thetaftmp); 6 xf=1-dl+r.*cos(theta); 7 zf=r.*sin(theta);```

However, since \((r + \Delta') \sim O(\epsilon)\), we can also use the approximation

\[
\theta = \theta_f + (r + \Delta') \sin \theta_f + O(\epsilon^2). \quad (51)
\]

Using (21)-(23), another choice of flux coordinate is keeping \(\theta_f = \theta\) and \(r_f = r\) but \(\zeta_f = \zeta - \nu(r, \theta)\), with

\[
\nu = -\left( -K \frac{d_r \psi_f}{d_r \psi_t} \right) = -q(r + \Delta') \sin \theta. \quad (52)
\]

One can also obtain this result via (15).

### 2.4 Forms in Boozer coordinate

Note (31), (32) and \(\nabla \psi_p = \nabla \psi/q = r \nabla r/q\), rewrite (16) to covariant representation similar as (14) using (19)

\[
\mathbf{B} = g(\psi) \nabla \phi + \frac{r^2}{qR(1 - \Delta' \cos \theta)} \nabla \theta + \frac{\Delta' \sin \theta}{qR(1 - \Delta' \cos \theta)} \nabla \psi. \quad (53)
\]

\(^8\)Here is also an equal arc coordinate.
Noting $q(r) = \frac{B \nabla \phi}{B \nabla b}$, and using\(^9\) \[ \frac{\partial \theta_b}{\partial \theta} = \frac{1}{R(1 - \Delta' \cos \theta)} (R^2 |r \nabla \theta_b|^2) \approx \frac{1}{R(1 + \Delta' \cos \theta)} \] (54)
i.e.,

\[ \theta_b = \theta - (r + \Delta') \sin \theta, \] (55)
where $|r \nabla \theta_b|^2 = 1 - 2(r + \Delta') \cos \theta$, we can transform (53) to Boozer form [need check $\delta(\psi, \theta)$]

\[ B = \frac{g(\phi) \nabla \phi + r^2 \nabla \theta_b + \frac{\Delta' \sin \theta}{q} \nabla \psi}{O(1)} \frac{q}{O(c)} \frac{q}{O(c^2)} \] (56)

which gives $I = r^2/q$. Since the $\delta(\psi, \theta)$ term is $O(\epsilon^2)$ and complicated, for applications, we may set it to zero, i.e., use $\delta = 0$ approximation. For $g$, we can use $g = 1$ approximation or calculate from (37)

\[ g = 1 + g_2 = 1 - p(r) - \int_a^r \frac{1}{q} \left( \frac{r^2}{q} \right)' dr. \] (57)

An estimation of $g_2$ with $q = 2$, $a = 0.3$, $p = 0.05$, gives $|g_2| \simeq | -0.05 + 0.3^2/4 | \simeq 0.03 \ll 1$, which is indeed very small.

We can also find that the Boozer coordinate (55) is the same as (50).

The Jacobian

\[ J = [\nabla \phi \cdot (\nabla \psi \times \nabla \theta_b)]^{-1} = [r \nabla \phi \cdot (\nabla r \times \nabla \theta_b)]^{-1} = \frac{R(1 - \Delta' \cos \theta)}{1 - (r + \Delta') \cos \theta} \simeq R^2 \simeq 1/B^2. \] (58)

### 2.5 Forms in Hamada coordinate

We write the results directly here without detailed derivatives [need check],

\[ \theta_h = \theta + (r - \Delta') \sin \theta, \quad \zeta_h = \phi + 2qr \sin \theta, \] (59)
with Jacobian

\[ J = [\nabla \zeta_h \cdot (\nabla \psi \times \nabla \theta_h)]^{-1} \simeq 1. \] (60)

### 2.6 Zero shift

A zero shift or concentric circular geometry is simple and useful which is widely used for test problems. The well-known $s-\alpha$ Cyclone benchmark\(^10\) is in fact $\alpha = 0$, i.e., concentric circular.

To give all variables analytically, we need special form of $q$ profile to avoid numerical integral of $r(\psi_p) = \sqrt{2 \int q d\psi_p}$, where we have used $\psi_1 = r^2/2$ and $d\psi_1/d\psi_p = q$. A usual choice is

\[ q = q_1 + q_2 r^2, \] (61)

\(^9\)Note: the transformation $\frac{\partial \theta_b}{\partial \phi} = \frac{1}{R(1 - \Delta' \cos \theta)}$, gives $\theta_b = \theta - (r - \Delta') \sin \theta$, which is incorrect. Thanks Dr. F. Zonca points out to me this.

where $\hat{r} = r/a$, or
\[ q = q_1 + q_2 \hat{\psi}_p + q_3 \hat{\psi}_p^2, \tag{62} \]
where $\hat{\psi}_p = \psi_p/\psi_w$, with $\psi_w$ the wall $\psi_p$.

For (61), we get
\[ \psi_p = \frac{a^2}{2q_2} \ln \left( 1 + \frac{2q_2}{a^2 q_1} \psi_t \right) = \frac{a^2}{2q_2} \ln \left( 1 + \frac{q_2}{q_1} r^2 \right). \tag{63} \]

For (62), we get
\[ \psi_w \left( q_1 \hat{\psi}_p + \frac{q_2}{2} \hat{\psi}_p^2 + \frac{q_3}{3} \hat{\psi}_p^3 \right) = \frac{r^2}{2}, \tag{64} \]
gives
\[ \psi_p = \frac{r^2}{2\bar{q}} \tag{65} \]
with $\bar{q} = q_1 + q_2 \hat{\psi}_p + q_3 \hat{\psi}_p^2$ and $a = 2\bar{q}(1)\psi_w$.

Other variables can be found in previous sections, and some of them are: $R = 1 + r \cos \theta$, $B = \sqrt{B_t^2 + B_p^2}$, $B_t = 1/R = 1 - r \cos \theta$, $B_p = r/q R$, $g = 1$, $I = r^2/q$, $\delta = 0$. Usually, we use flux (Boozer) coordinate, then one should note $\theta = \theta_0 - r \sin \theta_0$. So, to $O(\epsilon^2)$, we can use
\begin{align*}
R &= 1 + r_f \cos \theta_f - r^2 \sin^2 \theta_f, \tag{66a} \\
Z &= r_f \sin \theta_f + r_f^2 \sin \theta_f \cos \theta_f, \tag{66b} \\
B &= 1 - r_f \cos \theta_f + r_f^2. \tag{66c}
\end{align*}

However, form as (66) is not a good choice when $\Delta(r) \neq 0$. This form (see also Ref. [8]) can be used for analytical study, but bad for numerical study because flux surface would not be circles any more.

3 Applications

Shift circular equilibrium is useful since it is a good approximation and can gives arbitrary $p$, $q$ profile easily and also has explicit flux coordinate expressions. While in numerical equilibrium, usually $q$ profile is calculated after solving the G-S equation$^{11}$. And we need numerical mapping of the flux coordinate.

3.1 GTC

In fact, the main motivation to write this document is from adding shift circular equilibrium to GTC.

For GTC (or R. B. White’s ORBIT), we need calculate/input parameters: $q(r), p(r), \psi(r)^{12}, \Delta, \Delta', R, Z, B, I, g, \delta, \nu, J$.

---

$^{11}$Some codes can choose $q$-profile, e.g., JSOLVER

$^{12}$Note: Here, we mean $\psi_p$. Please be careful of both normalizations and notations in practical applications.
3.1 GTC APPLICATIONS

(a) poloidal mesh, old

(b) B−field, old

(c) poloidal mesh, new

(d) B−field, new

Figure 6: Grid mesh and B field for GTC, using old and new method, with Shafranov shift.

3.1.1 Profiles

We hope the $q(r)$, $p(r)$ or shear $s = \frac{\partial q}{\partial r}$ or gradient $\frac{d\ln(f)}{dr}$ profiles can be arbitrary. One can use analytical functions as in subsection 2.6 to model profiles. However, to choose good functions is not easy. Reading data from experiments or other codes (e.g., TRANSP) is also a choice.

Usually, we need numerical integral here now, especially for $\psi_p$ and $\Delta$.

Widely used profiles are $f \propto 1.0 + f_1\{\tanh[(f_2 - \hat{\psi})/f_3] - 1.0\}$ or $\frac{d\ln(f)}{dr} \propto \exp\{-(r - r_1)/r_2\}_{13}^{13}$.

Here, we use N-point (we use default N=11) fitting method, which is simple, general to model arbitrary profiles with enough accuracy.

We have two ways to add Shafranov equilibrium to GTC: one is writing to GTC Fortran code directly as previous concentric circular analytical equilibrium; another is generating ‘profile.dat’ and ‘spdata.dat’ to be read by GTC numerical equilibrium part.

To keep original GTC code neat, we use the latter way. MATLAB code ‘profile_generator.m’ is to provide ‘profile.dat’ and be read by ‘shafeq_spdata.m’ to provide ‘spdata.dat’.

Several choices are provided in ‘profile_generator.m’: one can use analytical profile, N-point fitting profile or read data from TRANSP outputs.

In ‘shafeq_spdata.m’, to get ‘spdata.dat’, we need interpolation and mapping. Two other func-

\[ \text{E.g., Z. Lin and T. S. Hahm, PoP, 11, 1099-1108 (2004).} \]
tions ‘spln1d.m’ and ‘spln2d.m’ are required, which will be discussed in the next subsection.

### 3.1.2 Mapping

The basic ideal is using B-spline. The 1D spline mapping in $\psi$ is as

$$ f(\psi) = f(1, i) + f(2, i)h + f(3, i)h^2, \quad (67) $$

where $\psi_i \leq \psi \leq \psi_{i+1}$, $h = \psi - \psi_i$, $i = 0, 1, ..., N$, and uniform grid size is assumed. Thus, $f'(\psi) = f(2, i) + 2hf(3, i)$. The coefficients $f(1:3, i)$ are calculated using ‘spln1d.m’.

The 2D spline mapping in $(\psi, \theta)$ is

$$ f(\psi, \theta) = f(1, i, j) + f(2, i, j)\Delta \psi + f(3, i, j)\Delta \psi^2 + f(4, i, j)\Delta \theta f(5, i, j)\Delta \psi \Delta \theta + f(6, i, j)\Delta \theta \Delta \psi^2 + f(7, i, j)\Delta \theta^2 + f(8, i, j)\Delta \psi \Delta \theta^2 + f(9, i, j)\Delta \psi^2 \Delta \theta^2, \quad (68) $$

and the coefficients $f(1:9, i, j)$ are calculated using ‘spln2d.m’. The derivatives of $f(\psi, \theta)$ are also easily to obtain.

Details discussion of the B-spline used in GTC can be found in Ref.[10]. Here, ‘spln1d.m’ and ‘spln2d.m’ I used are updated from ORBIT code.

### 3.1.3 Implement

In GTC previous zero-shift analytical equilibrium, $R$, $Z$ and $B$ are calculated using (66). As mentioned, this will caused deformation of flux surface. So, we use new treatment as proved in Sec.2.3. It seems the interpolation to calculated $\theta_f$ v.s. $\theta_s$ is not that necessary when $\eta \equiv r + \Delta'$ is small, say $\eta \leq 0.5$, so we use (51) and $B = 1/R$.

However, for ballooning mode case, $\eta$ is usually large. We choose interpolation for these cases.

The grid mesh and B field using old and new method with Shafranov shift are shown in Fig.6. From panels (a) and (b), we can see the deformation of flux surface when using old treatment when $\Delta \neq 0$. Anyway, ‘shafeq_spdata.m’ proves both options.

### 3.1.4 Benchmark

We use the Cyclone case to benchmark\textsuperscript{14} the new equilibrium with GTC old analytical equilibrium (i.e., ‘analytic.F90’ and subroutine analyticceq in ‘eqdata.F90’).

The real frequency and growth rate is compared in Table1: (a) old, (b) new ($\Delta = 0$), (c) new ($\Delta \neq 0$). The error between (a) and (b) is around 3% though they should be the same, which may caused by the spline function, since (a) is calculated analytically, which (b) is calculated numerically from discrete grids. Comparing (c) with (a), we also find that the shift has merely a slight stabilized effect to ITG, i.e., to discuss ITG, ignoring Shafranov shift would not affect the results too much.

---

\textsuperscript{14}Default electrostatic benchmark of FULL, GTC and GT3D can be found in [Rewoldt2007] G. Rewoldt, Z. Lin and Y. Idomura, Linear comparison of gyrokinetic codes with trapped electrons, Computer Physics Communications, 2007, 177, 775.
Figure 7: The time history data for new equilibrium (c) with $\Delta \neq 0$.

Figure 8: GTC snapshots of $\delta\phi$ for three equilibriums.
### Table 1: GTC equilibrium benchmark

<table>
<thead>
<tr>
<th></th>
<th>(a) old</th>
<th>(b) new ($\Delta = 0$)</th>
<th>(c) new ($\Delta \neq 0$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega_r$</td>
<td>0.408</td>
<td>0.403</td>
<td>0.403</td>
</tr>
<tr>
<td>$\gamma$</td>
<td>0.214</td>
<td>0.208</td>
<td>0.202</td>
</tr>
</tbody>
</table>

![Graph](image1.png)

Figure 9: Guiding center orbit with concentric circles equilibrium.

Fig. 7 shows the time history data for new equilibrium (c). The poloidal cross section snapshots of $\delta \phi$ for three equilibriums are shown in Fig. 8.

### 3.2 orbit.m

At present, we only use the concentric circles equilibrium, with $q$-profile [62].

A typical run shown in Fig. 9 is calculated using the subroutine ‘OrbitGC_qpsip.m’ in the ‘orbit.m’ code [15].

Details are provided in ‘orbit.m’ document. This code is public. You can modify it as yourself. However, please acknowledge it or cite the URL if it is useful.

---


[15] This code calculates full orbit in general EM field such as dipole and tokamak, and also tokamak guiding center orbit using R. B. White’s formula [11].
3.3 awcon.m

At present, we only use the concentric circles equilibrium, but the equilibrium parameters such as $q(r)$, $p(r)$ are arbitrary. The ‘awcon.m’ code is developed to help quickly understand how to calculate Alfvén continuum, which is a simplified version of W. J. Deng’s ALCON\[11\], i.e., ‘awcon.m’ only calculates the concentric circles equilibrium case (then, the FFT part to transform numerical equilibrium is not needed) and thus very short.

A typical Alfvén continuum is shown in Fig.10. See ‘awcon.m’ document for details.

3.4 AMC

AMC\[12\] (Alfvén Mode Code\[17\]) calculated both Alfvén continuum and eigenmode using general shift circle equilibrium, which solves the vorticity equation (shear Alfvén law)

$$\nabla \cdot \left( \frac{\omega^2}{v_A^2} \nabla \delta \phi \right) + \mathbf{B} \cdot \nabla \left( \frac{1}{B^2} \nabla \cdot B^2 \nabla \perp Q \right) - \nabla \left( \frac{J}{B} \right) \cdot (\nabla Q \times \mathbf{B}) + 2 \kappa \cdot \frac{(\mathbf{B} \times \nabla \delta P)}{B^2} = 0,$$

where, $\kappa = \mathbf{b} \cdot \nabla \mathbf{b}$, $Q = (\mathbf{b} \cdot \nabla \delta \phi)/B$, $\delta P = (\mathbf{b} \times \nabla \delta \phi \cdot \nabla P)/B$, $J_{\parallel} = \mathbf{b} \cdot \nabla \times \mathbf{B}$. Eq.\[69\] holds for large aspect ratio ($\epsilon = r/R \ll 1$) tokamak plasma to second order, and we have assumed low beta $\beta \sim O(\epsilon^2)$.

---

\[16\]See \url{http://ifts.zju.edu.cn/forum/viewtopic.php?f=18&t=748}

\[17\]Named by W. Chen.
4 Ballooning Mode

Besides Alfvén eigenmodes (GAE, TAE, RSAE and more), AMC also supports unstable internal kink mode as well as ideal ballooning mode (IBM).

Fig. 11 shown the TAE result with $q = 1.0 + 1.0(r/a)^2$, $\rho = 1.0$, $n=1$ and $R_0/a = 4$.

4 Ballooning Mode

The local $s - \alpha$ equilibrium is widely used for ballooning mode, since the ballooning representation.

4.1 Ballooning mode representation

4.2 Ideal ballooning mode

For $s-\alpha$ model to calculate the ballooning mode, the usual definition is $\alpha \equiv -q^2 R_{\parallel} \delta \beta \simeq \Delta'$. To access the second stability domain, we usually need $\alpha > 1$ or $\gg 1$. While, from (42), $\Delta' > 1$ is forbidden.

The problem is from the approximation $\alpha \simeq \Delta'$. A more reasonable mode equation for ideal ballooning mode should be (see also p131 in Ref[1])

$$\frac{\partial}{\partial \theta} [1 + h^2(\theta)]$$

[not correct, $\alpha \simeq r \Delta''$]

\[18\] G. Y. Fu and J. W. V. Dam, PFB, 1, 1949.
4.3 Test in GTC

It seems we should keep $r \leq 0.4$, $r + \Delta' \leq 0.5$. Otherwise, the $\theta$ around the wall flux surface would not be handled correctly.

Communications and discussions with Fulvio Zonca, Yong Xiao, You-Wen Sun, Joseph McClenaghan, You-Jun Hu, Zhi-Xin Lu, Tai-ge Zhang, Christopher Wrench, Wen-jun Deng and Andreas Bierwage improved this document a lot.

References

[12] H. S. Xie and Y. Xiao, Parallel equilibrium current effects on the existence of reversed shear Alfvén eigenmodes, to submit.