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The conventional ballooning structures for toroidal drift waves peak in the outboard mid-plane
of tokamaks. With strong gradients in the pedestal of H-mode plasmas, gyrokinetic simulations are
carried out for the trapped electron and ion temperature gradient modes. General unconventional
mode structures that can localize at arbitrary poloidal positions or with multiple peaks are found.
By solving the eigenvalue problem of a simplified model equation, it is found that series eigen
solutions exist. At weak gradient (L-mode), the most unstable solution is usually the ground eigen
state, which corresponds to a conventional mode structure. However, at strong gradient (H-mode),
the most unstable solutions usually are not the ground eigen state and the mode structures are
general. This result implies that the transport properties of H-mode can be significantly different
from those of L-mode. [2015-03-11 14:20 rev]
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Drift wave turbulence existing universally in magne-
tized plasmas is believed to be the major cause of anoma-
lous transport[1] in tokamaks. It is crucial to understand
the properties of the micro-instabilities that lead to the
drift wave turbulence, especially in the high-confinement
mode (H-mode) of tokamaks.

In this Letter, we show that the linear properties of two
major types of electrostatic micro-instabilities, namely
the trapped particle mode (TEM) and ion temperature
gradient (ITG) mode, are completely different in the
H-mode (strong gradient) and L-mode (weak gradient)
stages. With the conventional weak gradient, the mode
structures for drift wave instabilities such as the ITG and
TEM are of ballooning type, peaking at the outboard
mid-plane of the tokamak (c.f., [2–4]). This type of so-
lution has been intensively studied using the ballooning-
representation[5, 6] by reducing one 2D eigen mode equa-
tion for the drift waves to two 1D eigen mode equa-
tions. The most unstable solutions in the ballooning
space found in the past have usually the ballooning-angle
parameter ϑk = 0[7], which corresponds to the solution
localized at the outside mid-plane, i.e., θp = 0 in our
notation, where θp is defined as the peaking poloidal an-
gle for the mode structure. For this reason, many lo-
cal eigenvalue codes such as HD7[8] assume implicitly
ϑk = 0. The unconventional eigen modes with ϑk 6= 0
have been recently discovered in the strong gradient pa-
rameter regime. Typically, |θp| ' or < π/2 have been
shown to exist[3, 4, 9, 10]. In this work, we find the
most general unconventional eigen mode structures from
first principle gyrokinetic simulations. The underlying
physics is also explained and it has important implica-
tions for turbulent transport.

We first obtain linear electrostatic results from gyroki-
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netic particle simulation using the GTC code[11, 12] with
single toroidal mode number n. The simulation parame-
ters and profiles are similar to that of the recent H-mode
experiments of the HL-2A tokamak[13]: toroidal mag-
netic field B0 = 1.35T , minor radius a = 40cm, ma-
jor radius R0 = 165cm, safety factor q = 2.5 − 3.0,
magnetic shear s = 0.3 − 1.0, R0/LT = 80 − 160 with
Te(r) = Ti(r), and ne(r) = ni(r). Ln and LT are density
and temperature gradient scale length. We start with
η = Ln/LT ' 1.0 for simplicity. Collisions are included
in some cases but shown little influence to the general
results. Under these parameters, no instability or only
weakly unstable mode can be found when the electrons
are adiabatical. Thus, the major instability for these
simulation parameters is the trapped electron mode.

These TEM simulations show that both conventional
and unconventional ballooning mode structures can ex-
ist for various temperature gradients and toroidal mode
numbers (n = 5 − 30) , as shown by Fig.1. The novel
features include: a). the mode can have anti-ballooning
structure (i.e., |θp| > π/2, e.g., Fig.1g); b). the mode
can have multiple peaks (e.g., Fig.1b). Considering that
the trapped particles are usually located at the low mag-
netic field side, i.e., the outboard side, the anti-ballooning
structures of TEM are not expected. The 3D mode
structure of the electrostatic potential can be represented
by the Fourier series δφ(r, θ, ζ) = einζ

∑
m δφm(r)e−imθ,

where m is poloidal mode number. To explore the for-
mation of these different eigenmode structures, we com-
pute the δφm(r) for several typical conventional and un-
conventional mode structures, as shown in Fig.2. For
the conventional ballooning structure, the poloidal eigen
modes δφm(r) are almost radially symmetric (Gaussian-
like) and positive in amplitude. And, δφm has a large
overlap with δφm+1, i.e., δφm ' δφm+1. However, for
the unconventional structures, the poloidal eigen modes
δφm(r) can be radially either symmetric or asymmetric,
and the amplitude for each symmetric mode can be either
positive or negative, as shown by Fig. 2b, c and d.
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FIG. 1: Conventional (a) and unconventional (b-i) ballooning
structures of electrostatic potential for TEM observed in GTC
simulation, where (a) uses weak gradient L-mode (Cyclone
base case[2]) parameter and (b)-(i) use strong gradient H-
mode parameters. Collisions are only included in (e) and (g).
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FIG. 2: The real part of Fourier δφm(r) for conventional and
unconventional mode structures. The corresponding poloidal
cross section mode structures of (a)-(d) are taken from Fig.1
(a), (b), (g) and (i), respectively.

FIG. 3: unconventional ITG mode structures in GTC. (a &
b) Anti-ballooning structure. (c & d) Two modes co-exist (or,
one mode with two radius peaks) at different radius positions.
One has θp ' π/2 and another has θp ' −π/2.

Next we consider ITG mode by reducing the density
gradient. To completely exclude the contribution of the
kinetic electrons, we use adiabatic electrons in the sim-
ulations. It is found that the preceding unconventional
mode structures still exist and exhibit even more struc-
tural variations. For example, the anti-ballooning struc-
ture is found for this ITG simulation, as is shown in
Fig.3a&b. Actually, the mode structure with global pro-
files and multi modes coexisting in the initial value sim-
ulation can be even more complicated. For example,
two modes with similar growth rates can be excited in
different radial locations, as shown in Fig.3c&d. Multi
modes coexist with close peaking positions in the initial
value simulation can also lead to θp = θp(t), i.e., rotate
poloidally with time. Thus, these unconventional mode
structures are not limited to TEM and can be common
for drift waves.

These unconventional linear behaviors can be under-
stood from the following eigenmode analysis. We start
with the ITG eigen mode equation[4, 6][

ρ2i
∂2

∂x2 − σ2

ω2

(
∂
∂θ + ikθsx

)2
− 2εn

ω

(
cos θ + i sin θ

kθ
∂
∂x

)
− ω−1
ω+ηs

− k2θρ2i
]
δφ(x, θ) = 0, (1)

where σ = εn/(qkθρi), εn = Ln/R0, ηs = 1+ηi, x = r−rs
and the poloidal wave number kθ = nq/r. Eq.(1) can
be derived from the gyrokinetic theory with adiabatic
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electron assumption. The corresponding 1D eigen mode
equation in the ballooning space is{

σ2

ω2
d2

dϑ2 + k2θρ
2
i [1 + s2(ϑ− ϑk)2] + 2εn

ω [cosϑ

+s(ϑ− ϑk) sinϑ] + ω−1
ω+ηs

}
δφ̂(ϑ, ϑk) = 0, (2)

where ϑk is the ballooning-angle parameter, which repre-
sents an as yet undetermined radial wavenumber[6]. Us-
ing the Fourier basis δφ(x, θ) =

∑
m ume

−imθ, Eq.(1) can
be rewritten as the 2D eigenmode equation

k2θρ
2
i s

2 ∂2um
∂z2 + σ2

ω2 (z −m)2um − εn
ω

[(
1− s ∂∂z

)
um−1

+
(

1 + s ∂∂z

)
um−1

]
−
(
ω−1
ω+ηs

+ k2θρ
2
i

)
um = 0, (3)

where z = kθsx. To solve the eigenvalue problem of
Eq.(3), only several m modes need to be kept.

With suitable approximations, both Eqs.(2) and (3)
can be reduced to the Weber equation u′′+(bx2+a)u = 0,
which has solutions with the eigenvalues a(ω) = i(2l +

1)
√
b(ω) and eigenfunctions u(x) = Hl(i

√
bx)e−ibx

2/2,
where Hl is l-th Hermite polynomial and l = 0, 1, 2, ...,
which represent a series eigenstates. With the origi-
nal equations, i.e., Eqs.(2) and (3), which can only be
solved numerically, the eigenstates take a more compli-
cated form.

Eqs.(2) and (3) can be solved numerically by trans-
forming it to a matrix eigenvalue problem as ω3M3X +
ω2M2X + ωM1X + M0X = 0. We use finite differ-
ence to discretize the system, which yields sparse ma-
trices for Mi (i = 0, 1, 2, 3). Using the companion ma-
trix method, the nonlinear eigenvalue problem can be
transformed to a standard eigenvalue problem as AY =
ωBY , where Y = [X1,X2,X3] ≡ [X, ωX, ω2X],
A = [O, I,O;O,O, I;−M0,−M1,−M2], B =
[I,O,O;O, I,O;O,O,M3], and I and O are unit and
null matrix respectively. Thus all the solutions of this
eigen system can be obtained (c.f., [14] for details of sim-
ilar treatment). The advantage of this method is that
it can show the complete set solutions of the discrete
eigen system and help us to understand the distribu-
tion of eigenvalues in the complex plane. The solution
in Refs.[3, 4] using iterative solver is actually just one of
the solutions obtained here and may not be the most un-
stable or most important, which depends heavily on the
initial guess. This companion matrix method has been
verified by comparing the numerical solutions with that
from the shooting method and the analytical solution
whenever it can be found.

By solving Eq.(2) in the 1D ballooning space, the un-
conventional ballooning structures occur when either the
most unstable solution is not the ground eigen state
(l 6= 0), or the ballooning angle ϑk 6= 0. Both of these two
conditions can be met in the strong gradient regime. The
most unstable solution with ϑk 6= 0 has been discussed
by others (c.f., [9, 15]). Here we focus on the uncon-
ventional ballooning structure caused by the non-ground
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FIG. 4: In Eq.(2), series solutions exist. For weak gradient
(εn = 0.5), the most unstable solution is the ground state
(a&b), which is the conventional ballooning structure. For
strong gradient (εn = 0.2), the most unstable solution is not
the ground state (c&d), which represents the unconventional
ballooning structure.

eigen state. The following parameters are used to solve
Eq.(2): s = 0.8, kθρi = 0.4, q = 1.0, ηs = 3.0 and ϑk = 0.
As is known from the aforementioned analytical analogy,
Fig.4 shows that a series of solutions can exist for Eq.(2).
For the weak gradient case (εn = 0.5), we find that the
most unstable solution is the ground state (Fig.4a), which
is the conventional ballooning structure (Fig.4b). For
the strong gradient case (εn = 0.2), the most unstable
solution is not the ground state (Fig.4c&d), which cor-
responds to the unconventional ballooning structure. A
detailed analysis of Eq.(2) for present discussion of the
unconventional mode structure will be in Ref.[17], which
is an extension of Refs.[16, 18].

We have demonstrated that, with strong gradient
the most unstable solution can shift from ground state
to other non-ground states, which is analogous to the
quantum jump between energy levels. Physically, the
jump behavior can be understood from the effective
potential[16]. The jump happens from one potential well
to another, which leads to different energy levels. It is
not transparent that the non-ground eigen state in the
1D ballooning space corresponds to the unconventional
mode structure in the 2D poloidal plane. Next we con-
firm this link by showing that the non-ground 2D eigen
state solved from Eq.(3) can form the unconventional
mode structures observed in the preceding gyrokinetic
simulation. The solutions in Refs.[3, 4, 9] are just a weak
asymmetric solutions of our series solutions. Almost all
the mode structures in Figs.1 and 3 have also been found
in the 2D eigen solutions of Eq.(3). Two examples are
shown in Fig.5. Therefore, conventional and unconven-
tional series solutions have been found in both 2D eigen
solver and GTC initial simulations. The condition for
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FIG. 5: Typical unconventional mode structures from 2D
eigen solution for Eq.(3). (b) is similar to Fig.1(c&d), and
(c&d) is similar to Fig.3(d&c)

the jump of the most unstable eigen state to non-ground
state is εn < εc, where εc is a critical gradient parameter
which depends on other parameters. In GTC simulations
of the HL-2A parameters, the typical critical temperature
gradient value is R0/LT = 40− 120.

The results from the gyrokinetic simulation and eigen
mode analysis show that the unconventional mode struc-
tures exist mainly in the strong gradient regime or the

H-mode. In the weak gradient regime or L-mode, con-
ventional mode structures still prevail. This can indi-
cate different transport behavior between H-mode and
L-mode[19]. In the conventional ballooning structure,
the neighboring Fourier modes um ' um+1, the effective
correlation length may be estimated as the width of ra-
dial envelope of the modes, say, ∆A. Whereas, in the
unconventional ballooning structures, especially for anti-
ballooning structure, um ' −um+1 can occur, i.e., a 180◦

phase shift for the neighboring Fourier modes, which can
change the effective correlation length to the distance
of neighboring mode-rational surfaces ∆rs. Considering
that ∆rs � ∆A, we can expect that the H-mode can
have better confinement. However, to fully understand
these subtle issues, a self-consistent nonlinear gyrokinetic
simulation is required.

To summarize, a broad class of unconventional balloon-
ing modes are found for electrostatic drift waves (TEM
and ITG) by the gyrokinetic simulation, which is shown
to be common in the strong gradient regime. These un-
conventional mode structures are shown to correspond to
the non-ground-state solutions of the eigen mode equa-
tion. These results may have important implications for
the turbulent transport in tokamaks, i.e., the turbulent
transport mechanism in the H-mode can be rather differ-
ent from that in the L-mode.
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